User:JohnOwens/Orbital equations

Contents

Variables

Time-related

  • ω angular velocity
  • N rotational speed
  • T time (of period)

Distance-related

  • r radius
  • v velocity (tangential)
  • a acceleration
    • <math>a_c<math> centripetal acceleration

Gravitational

  • MG product of central or total mass and gravitational constant

Cumulative equations

  1. <math>\omega \equiv 2\pi N<math>
  2. <math>\omega T \equiv 2\pi<math>
  3. <math>N T \equiv 1<math>
  4. <math>\omega r \equiv v<math>
  5. <math>\omega^2 r \equiv a<math>
  6. <math>\omega^2 r^3 = MG<math>
  7. <math>\omega v = a<math>
  8. <math>\omega MG = v^3<math>
  9. <math>\omega^4 MG = a^3<math>
  10. <math>T v = 2\pi r<math>
  11. <math>T^2 a = 4\pi^2 r<math>
  12. <math>T^2 MG = 4\pi^2 r^3<math>
  13. <math>T a = 2\pi v<math>
  14. <math>T v^3 = 2\pi MG<math>
  15. <math>T^4 a^3 = 16\pi^4 MG<math>
  16. <math>2\pi N r = v<math>
  17. <math>4\pi^2 N^2 a = r<math>
  18. <math>4\pi^2 N^2 r^3 = MG<math>
  19. <math>2\pi N v = a<math>
  20. <math>2\pi N MG = v^3<math>
  21. <math>16\pi^4N^4 MG = a^3<math>
  22. <math>r a \equiv v^2<math>
  23. <math>r v^2 = MG<math>
  24. <math>a r^2 \equiv MG<math>
  25. <math>v^4 = a MG<math>

Isolated variable equations

Time-related

ω

  1. <math>\omega \equiv {2 \pi \over T} \equiv 2 \pi N<math>
  2. <math>\omega = {v \over r}<math>
  3. <math>\omega = {a \over v}<math>
  4. <math>\omega = \sqrt{a \over r}<math>
  5. <math>\omega = {v^3 \over MG}<math>
  6. <math>\omega = \sqrt{MG \over r^3}<math>
  7. <math>\omega = \sqrt[4]{a^3 \over MG}<math>

N

  1. <math>N \equiv {\omega \over 2\pi} \equiv {1 \over T}<math>
  2. <math>N = {v \over 2\pi r}<math>
  3. <math>N = {a \over 2\pi v}<math>
  4. <math>N = {\sqrt{r} \over 2\pi\sqrt{a}} \equiv \sqrt{r \over 4\pi^2a}<math>
  5. <math>N = {v^3 \over 2\pi MG}<math>
  6. <math>N = {\sqrt{MG} \over 2\pi\sqrt{r^3}} \equiv \sqrt{MG \over 4\pi^2r^3}<math>
  7. <math>N = {\sqrt[4]{a^3 \over MG} \over 2\pi} \equiv \sqrt[4]{a^3 \over 16\pi^4 MG}<math>

T

  1. <math>T \equiv {2\pi \over \omega} \equiv {1 \over N}<math>
  2. <math>T = {2\pi r \over v}<math>
  3. <math>T = {2\pi v \over a}<math>
  4. <math>T = 2\pi\sqrt{r \over a} \equiv \sqrt{4\pi^2 r \over a}<math>
  5. <math>T = {2\pi MG \over v^3}<math>
  6. <math>T = 2\pi\sqrt{r^3 \over MG} \equiv \sqrt{4\pi^2 r^3 \over MG}<math>
  7. <math>T = 2\pi\sqrt[4]{MG \over a^3} \equiv \sqrt[4]{16\pi^4 MG \over a^3}<math>

Distance-related

r

  1. <math>r = {v \over \omega} \equiv {v \over 2\pi N} \equiv {T v \over 2\pi}<math>
  2. <math>r = {a \over \omega^2} \equiv {a \over 4\pi^2 N^2} \equiv {T^2 a \over 4\pi^2}<math>
  3. <math>r = \sqrt[3]{MG \over \omega^2} \equiv \sqrt[3]{MG \over 4\pi^2 N^2} \equiv \sqrt[3]{T^2 MG \over 4\pi^2}<math>
  4. <math>r = {v^2 \over a}<math>
  5. <math>r = {MG \over v^2}<math>
  6. <math>r \equiv \sqrt{MG \over a}<math>

v

  1. <math>v = \omega r \equiv 2\pi N r \equiv {2\pi r \over T}<math>
  2. <math>v = {a \over \omega} \equiv {a \over 2\pi N} \equiv {T a \over 2\pi}<math>
  3. <math>v = \sqrt[3]{\omega MG} \equiv \sqrt[3]{2\pi N MG} \equiv \sqrt[3]{2\pi MG \over T}<math>
  4. <math>v = \sqrt{r a}<math>
  5. <math>v = \sqrt{MG \over r}<math>
  6. <math>v = \sqrt[4]{a MG}<math>

a

  1. <math>a = \omega r^2 \equiv {4\pi^2 r \over T^2} \equiv 4\pi^2N^2 r<math>
  2. <math>a = \omega v \equiv {2\pi T \over v} \equiv 2\pi N v<math>
  3. <math>a = \sqrt[3]{\omega^4 MG} \equiv \sqrt[3]{16\pi^4 MG \over T^4} \equiv \sqrt[3]{16\pi^4N^4 MG}<math>
  4. <math>a = {v^2 \over r}<math>
  5. <math>a \equiv {MG \over r^2}<math>
  6. <math>a = {v^4 \over MG}<math>

Gravitational

MG

  1. <math>MG = \omega^2 r^3 \equiv {4\pi^2 r^3 \over T^2} \equiv 4\pi^2N^2 r<math>
  2. <math>MG = {v^3 \over \omega} \equiv {T v^3 \over 2\pi} \equiv {v^3 \over 2\pi N}<math>
  3. <math>MG = {a^3 \over \omega^4} \equiv {T^4 a^3 \over 16\pi^4} \equiv {a^3 \over 16\pi^4N^4}<math>
  4. <math>MG = r v^2<math>
  5. <math>MG = r^2 a<math>
  6. <math>MG = {v^4 \over a}<math>
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools