Trigonometric polynomial

In the mathematical subfield of numerical analysis, a trigonometric polynomial is a finite linear linear combination of sin(nx) and cos(nx) with n a natural number. Hence the term trigonometric polynomial as the sin(nx)s and cos(nx)s are used similar to the monomial basis for a polynomial.

The trigonometric polynomials are used in trigonometric interpolation to interpolate periodic functions. They are used in the discrete Fourier transform which is a special kind of trigonometric interpolation.

Definition

Let an be in C, 0 ≤ nN and aN ≠ 0 then

<math>T_N(x) = \sum_{n=0}^N a_n \cos (nx) + \mathrm{i}\sum_{n=0}^N a_n \sin(nx) \qquad (x \in \mathbf{R})<math>

is called complex trigonometric polynomial of degree N. Using Euler's formula the polynomial can be rewritten as

<math>T_N(x) = \sum_{n=0}^N a_n e^{\mathrm{i}nx} \qquad (x \in \mathbf{R})<math>

Analogously let an, bn be in R, 0 ≤ nN and aN ≠ 0 or bN ≠ 0 then

<math>t_N(x) = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos (nx) + \sum_{n=1}^N b_n \sin(nx) \qquad (x \in \mathbf{R})<math>

is called real trigonometric polynomial of degree N.

Notes

Using the relation

<math>T_{2N}(x) = e^{\mathrm{i}Nx} t_N(x)<math>

we can construct a bijective mapping between the complex trigonometric polynomials and the real trigonometric polynomials. Thus a trigonometric polynomial can be considered a periodic function on the real line, with period some multiple of 2π, or as a function on the unit circle.

A trigonometric polynomial of degree N has a maximum of N roots in any open interval [a, a + 2π) with a in R.

A basic result is that the trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm. This is a special case, for example, of the Stone-Weierstrass theorem.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools