Trace class

In mathematics, a bounded linear operator A over a Hilbert space H is said to be in the trace class if for some (and hence all) orthonormal bases {ek}k of H the sum of positive terms

<math>\sum_{k} \langle (A^*A)^{1/2} \, e_k, e_k \rangle<math>

is finite. In this case, the sum

<math>\sum_{k} \langle A e_k, e_k \rangle<math>

is absolutely convergent and is independent of the choice of the orthonormal basis. This value is called the trace of A, denoted by Tr(A).

By extension, if A is a non-negative self-adjoint operator, we can also define the trace of A as an extended real number by the possibly divergent sum

<math>\sum_{k} \langle A e_k, e_k \rangle. <math>

If A is a non-negative self-adjoint, A is trace class iff Tr(A) < ∞. An operator A is trace class iff its positive part A+ and negative part A- are both trace class.

When H is finite-dimensional, then the trace of A is just the trace of a matrix and the last property stated above is roughly saying that trace is invariant under similarity.

The trace is a linear functional over the space of trace class operators, meaning

<math>\operatorname{Tr}(aA+bB)=a\,\operatorname{Tr}(A)+b\,\operatorname{Tr}(B).<math>

The bilinear map

<math> \langle A, B \rangle = \operatorname{Tr}(A^* B) <math>

is an inner product on the trace class; the corresponding norm is called the Hilbert-Schmidt norm. The completion of the trace class operators in the Hilbert-Schmidt norm can also be considered as a class of operators, the Hilbert-Schmidt operators.

For infinite dimensional spaces, the class of Hilbert-Schmidt operators is strictly larger than that of trace class operators. The heuristic is that Hilbert-Schmidt is to trace class as l2(N) is to l1(N).

The set <math>C_1<math> of trace class operators on H is a two-sided ideal in B(H), the set of all bounded linear operators on H. So given any operator T in B(H), we may define a continuous linear functional φT on <math>C_1<math> by φT(A)=Tr(AT). This correspondence between elements φT of the dual space of <math>C_1<math> and bounded linear operators is an isometric isomorphism. It follows that B(H) is the dual space of <math>C_1<math>. This can be used to defined the weak-* topology on B(H).

References

  1. Dixmier, J. (1969). Les Algebres d'Operateurs dans l'Espace Hilbertien. Gauthier-Villars.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools