Talk:Rayleigh scattering
|
- Rayleigh scattering (named after Lord Rayleigh) is the reason why the sky is blue. Rayleigh scattering of photons by Earth's atmosphere is dependant upon the size of the particles causing the scattering and the wavelength of the photon being scattered.
Neither of these first two sentences actually says what Rayleigh scattering is. The first says that it's the reason why the sky is blue. (So, now we have a name to a scientific explanation, but not the explanation.) The second says that the scattering is dependent upon something or other, but we still haven't been told what it is that is so dependent! --LMS
Have someone informations about Rayleigh's "blue sky law"? -- looxix 21:57 Mar 18, 2003 (UTC)
Why is Sky Blue? Answers
The question is not answered very well. Why not green or another shade of blue? The answer seems more dependent on the absorption of energy and the re-emission of a photon from the oxygen molecules, which is blue. The emission spectrum of the other gasses that make up the atmosphere are outside of our personal visual range. Another interesting question is, was the color of the sky always blue? I think not, as the content of the atmosphere has not always contained the 20% oxygen.
From the mailing list
>Dear Sir or Madam, > > On that link to the rayleigh scattering coefficient ks is a mistake in > the power of pi. Pi should be to the power of five and not to the power > of six. > http://en.wikipedia.org/wiki/Rayleigh_scattering > > Please check this again. Thank you. > > Best regards, > Daniel Ploss
Can anyone find a reference to confirm this? -- Anon.
I found a different formula for Rayleigh scattering.
I found a different formula for the Rayleigh scattering coefficient. There the number of scatterers is in the denominator. It is from a lexicon of optics. I doubt that this is wrong. The formula is scattering coefficient b = (8*PI^3/3*N*lambda^4) * (n^2-1)^2, where N is the number of scatterers and n is the index of refraction.
- Since that formula doesn't contain a term for the size of the particles (d in the article), it's probably only valid for the limit of d<<λ, so it's valid in a different domain. I'll try to check. -- DrBob 14:45, 11 Oct 2004 (UTC)
Could you please give the source for the formula in the article. Thank you.