Talk:Proton decay
|
The way this article is worded it presumes that proton decay actually occurs, when there is no evidence as yet that it actually does, just several theories which predict it. (IIRC, experimental evidence so far indicates that if it occurs at all, it takes a lot longer than many GUT candidates predict.)
- I've gone ahead and changed the article so it doesn't misstate the current consensus. Re the experimental evidence, the lower limit is evidence against the existence of decay, but it had been presented as if it was evidence in its favor; that didn't make sense, and I've changed it. I've also deleted this sentence: "The observation of neutrino oscillations also point towards proton decay being a real effect." Neutrino oscillation doesn't imply baryon number nonconservation; if there is some indirect, model-dependent link here, that needs to be explained.--Bcrowell 20:34, 23 Feb 2005 (UTC)
The article incorrectly assumes that decay into a neutral pion and a gamma is the only possible channel. If no assumptions are made on the decay mode, the experimental lower limit on proton mean life is just 1.6×10^25 years.
Source: Particle Data Group (http://pdg.lbl.gov/2002/bxxxn.pdf)
—Herbee 2004-02-10
"it has been recently determined..." -- when? -- Tarquin 09:50, 16 Sep 2003 (UTC)
Proton decay is the conveniant hadn wave that many theories use to explain certain components of background radiation. I tis howveer highly unlikely. Neutrons decay because they are udd adn eventually both d will decay with the resulting electrons fighting over the only u, so one of them gets emitted. a Proton however being uud does nto have that problem.
This article takes it as fact that there was an imbalance in the ratio of antimatter to matter in the early universe. I don't think there is any real experimental evidence of this. If so where is the article on it. I myself even have proposed an alternate theory for the matter-antimatter imbalance that does not require this magic.` 64.26.170.107 00:23, 28 Aug 2004 (UTC)