Stiefel-Whitney class

Stiefel-Whitney classes arise in mathematics as a type of characteristic class associated to real vector bundles <math>E\rightarrow X<math>. They are denoted <math>w_i(E)<math>, taking values in <math>H^i(X,\mathbb Z_2)<math>, the cohomology groups with mod <math>2<math> coefficients. Naturally enough, we say that <math>w_i(E)<math> is the <math>i<math>th Stiefel-Whitney class of <math>E<math>. As an example, over the circle, <math>S^1<math>, there is a line bundle that is topologically non-trivial: that is, the line bundle associated to the Möbius band, usually thought of as having fibres <math>[0,1]<math>. The cohomology group

<math>H^1(S^1,\mathbb Z/2\mathbb Z)<math>

has just one element other than <math>0<math>, this element being the first Steifel-Whitney class, <math>w_1<math>, of that line bundle.

Contents

Axioms

Throughout, <math>H^i(\;\cdot\;;G)<math> denotes singular cohomology with coefficient group <math>G<math>.

  1. For every real vector bundle <math>E\rightarrow X<math>, there exist <math>w_i(E)<math> in <math>H^i(X;\mathbb Z/2\mathbb Z)<math> which are natural, i.e., characteristic classes.
  2. <math>w_0(E)=1<math> in <math>H^0(X;\mathbb Z/2\mathbb Z)<math>.
  3. <math>w_ i(E)=0<math> whenever <math>i>\mathrm{rank}(E)<math>.
  4. <math>w_1(\gamma^1)=x<math> in <math>H^1(\mathbb RP^1;\mathbb

Z/2\mathbb Z)=\mathbb Z/2\mathbb Z<math> (normalization condition). Here, <math>\gamma^n<math> is the canonical line bundle.

  1. <math>w_k(E\oplus F)=\sum_{i+j=k}w_i(E)\cup w_j(F)<math>.
  2. If <math>E^k<math> has <math>s_1,\ldots,s_{\ell}<math> sections which are everywhere linearly independent then <math>w_{k-\ell+1}=\cdots=w_k=0<math>.

Some work is required to show that such classes do indeed exist and are unique.

Properties

The first Stiefel-Whitney class is zero if and only if the bundle is orientable.

The second Stiefel-Whitney class is zero if and only if the bundle admits a spin structure.

See also

References

J. Milnor & J. Stasheff, Characteristic Classes, Princeton, 1974.

Template:Math-stub

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools