Riemann-Liouville differintegral

In mathematics, the combined differentiation/integration operator used in fractional calculus is called the differintegral, and it has a few different forms which are all equivalent, provided that they are initialized (used) properly.

It is noted:

<math>{}_a \mathbb{D}^q_t<math>

and is most generally defined as:

<math>{}_a\mathbb{D}^q_t= \left\{\begin{matrix} \frac{d^q}{dx^q}, & \Re(q)>0 \\ 1, & \Re(q)=0 \\ \int^t_a(dx)^{-q}, & \Re(q)<0 \end{matrix}\right.<math>

The Riemann-Liouville differintegral (RL) is the simplest and easiest to use, and consequently it is the most often used.

Constructing the Riemann-Liouville differintegral

We first introduce the Riemann-Liouville fractional integral, which is a straightforward generalization of the Cauchy integral formula:

<math>{}_a\mathbb{D}^{-q}_tf(x)=\frac{1}{\Gamma(q)} \int_{a}^{t}(t-\tau)^{q-1}f(\tau)d\tau<math>

This gives us integration to an arbitrary order. To get differentiation to an arbitrary order, we simply integrate to arbitrary order n − q, and differentiate the result to integer order n. (We choose n and q so that n is the smallest positive integer greater than or equal to q (that is, the ceiling of q)):

<math>{}_a\mathbb{D}^q_tf(x)=\frac{d^n}{dx^n}{}_a\mathbb{D}^{-(n-q)}_tf(x)<math>

Thus, we have differentiated n − (n − q) = q times. The RL differintegral is thus defined as (the constant is brought to the front):

<math>{}_a\mathbb{D}^q_tf(x)=\frac{1}{\Gamma(n-q)}\frac{d^n}{dx^n}\int_{a}^{t}(t-\tau)^{n-q-1}f(\tau)d\tau<math> definition

When we are taking the differintegral at the upper bound (t), it is usually written:

<math>{}_a\mathbb{D}^q_tf(t)=\frac{d^qf(t)}{d(t-a)^q}=\frac{1}{\Gamma(n-q)} \frac{d^n}{dt^n} \int_{a}^{t}(t-\tau)^{n-q-1}f(\tau)d\tau<math> definition

And when we are assuming that the lower bound is zero, it is usually written:

<math>\mathbb{D}^q_tf(t)=\frac{d^qf(t)}{d(t)^q}=\frac{1}{\Gamma(n-q)} \frac{d^n}{dt^n} \int_{0}^{t}(t-\tau)^{n-q-1}f(\tau)d\tau<math> definition

That is, we are taking the differintegral of f(t) with respect to t.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools