Rayleigh distribution

Template:Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution. It usually arises when a two dimensional vector (e.g. wind velocity) has its two orthogonal components normally and independently distributed. The absolute value (e.g. wind speed) will then have a Rayleigh distribution. The distribution may also arise in the case of random complex numbers whose real and imaginary components are normally and independently distributed. The absolute value of these numbers will then be Rayleigh distributed.

The probability density function is

<math>f(x|\sigma) = \frac{x \exp\left(\frac{-x^2}{2\sigma^2}\right)}{\sigma^2}<math>

The characteristic function is given by:

<math>\varphi(t)=<math>
<math>1\!-\!\sigma te^{-\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}\!\left(\textrm{erfi}\!\left(\frac{\sigma t}{\sqrt{2}}\right)\!-\!i\right)<math>

where <math>erfi(z)<math> is the complex error function. The moment generating function is given by:

<math>M(t)=\,<math>
<math>1+\sigma t\,e^{\sigma^2t^2/2}\sqrt{\frac{\pi}{2}}

\left(\textrm{erf}\left(\frac{\sigma t}{\sqrt{2}}\right)\!+\!1\right)<math>

where <math>erf(z)<math> is the error function. The raw moments are then given by:

<math>\mu_k=\sigma^k2^{k/2}\,\Gamma(1+k/2)\,<math>

where <math>\Gamma(z)<math> is the Gamma function. The moments may be used to calculate:

Mean: <math>\sigma \sqrt{\frac{\pi}{2}}<math>

Variance: <math>\frac{4-\pi}{2} \sigma^2<math>

Skewness: <math>\frac{2\sqrt{\pi}(\pi - 3)}{(4-\pi)^{3/2}}<math>

Kurtosis: <math>- \frac{6\pi^2 - 24\pi +16}{(4-\pi)^2}<math>

Parameter estimation

The maximum likelihood estimate of the <math>\sigma<math> parameter is given by:

<math>\sigma\approx\sqrt{\frac{1}{2N}\sum_{i=0}^N x_i^2}<math>

Related distributions

  • <math>R \sim \mathrm{Rayleigh}(\sigma^2)<math> is a Rayleigh distribution if <math>R = \sqrt{X^2 + Y^2}<math> where <math>X \sim N(0, \sigma^2)<math> and <math>Y \sim N(0, \sigma^2)<math> are two independent normal distributions.
  • If <math>R \sim \mathrm{Rayleigh}(1)<math> then <math>R^2<math> has a chi-square distribution with two degrees of freedom: <math>R^2 \sim \chi^2_2<math>
  • If <math>X<math> has an exponential distribution <math>X \sim \mathrm{Exponential}(x|\lambda)<math> then <math>Y=\sqrt{2X\sigma\lambda} \sim \mathrm{Rayleigh}(y|\sigma)<math>.
  • The Chi distribution is a generalization of the Rayleigh distribution.
  • The Rice distribution is a generalization of the Rayleigh distribution.
  • The Weibull distribution is a generalization of the Rayleigh distribution.

See also

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools