Properly discontinuous

In topology and related branches of mathematics, an action of a group G on a topological space X is called properly discontinuous if every element of X has a neighborhood that moves outside itself under the action of any group element but the trivial element. The action of the deck transformation group of a cover is an example of such action.

Basic definition

The formal definition is as follows. Let a group G act on a topological space X by homeomorphisms. This action is called properly discontinuous if, for every x in X, there is a neighborhood U of x such that

<math>\forall g \in G \quad (g \neq e) \Rightarrow (gU \cap U = \varnothing).<math>

The set U is called a nice neighborhood of x.

This narrow, basic definition fails when applied to a certain interesting case where one still wants to have a notion of discontinuity: the case where the stabilizer of the point x is non-trivial. Thus, the definition is frequently extended as below.

Definition with a non-trivial stabilizer

An extended definition is as follows. Consider a subgroup <math>H \subset G<math>. One then says that a set Y is precisely invariant under H in G if

<math>\forall h \in H, \quad h(Y)=Y \;\mbox{ and }\;
      \forall g \in G-H, \quad gY \cap Y = \varnothing.<math>

Then let <math>G_x<math> be the stabilizer of x in G. One says that G acts discontinuously at x in X if the stabilizer <math>G_x<math> is finite and there exists a neighborhood U of x that is precisely invariant under <math>G_x<math> in G. If G acts discontinuously at every point x in X, then one says that G acts properly discontinuously on X.

Definition as a locally finite set

Another common definition is in terms of a locally finite set. Given any x in X, let Gx be the orbit of x under the action of G. One then says that the orbit is locally finite if every compact subset K of X contains at most a finite number of points from the orbit Gx; that is, if

<math>\mbox{card} (K\cap Gx) < \infty<math>

If the orbit Gx is locally finite for every x in X, then one says that the action of G on X is properly discontinuous.

Note that this alternate definition does not coincide with the basic definition if the stabilizer of x in G is non-trivial.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools