Pro-finite group

In mathematics, pro-finite groups are groups that are in a certain sense assembled from finite groups; they share many properties with the finite groups.

Contents

Definition

Formally, a pro-finite group is a group that is isomorphic to the inverse limit of an inverse system of finite groups. Pro-finite groups are naturally regarded as topological groups: each of the finite groups carries the discrete topology, and since the inverse limit is a subset of the product of these discrete spaces, it inherits a topology which turns it into a topological group.

Examples

  • Any product of finite groups is pro-finite.
  • The p-adic integers Zp</sup> are pro-finite (with respect to addition): they are the inverse limit of the finite groups Z/pnZ where n ranges over all natural numbers and the natural maps Z/pnZZ/pmZ (nm) are used for the limit process.
  • The Galois theory of field extensions of infinite degree gives rise naturally to Galois groups that are pro-finite. Specifically, if L/K is a Galois extension, we consider the group G = Gal(L/K) consisting of all field automorphisms of L which keep all elements of K fixed. This group is the inverse limit of the finite groups Gal(F/K), where F ranges over all intermediate fields such that F/K is a finite Galois extension. For the limit process, we use the restriction homomorphisms Gal(F1/K) → Gal(F2/K), where F2F1. The topology we obtain on Gal(L/K) is known as the Krull topology after Wolfgang Krull (1899 - 1971). Interestingly, every pro-finite group is isomorphic to one arising from Galois theory.

Properties and facts

Every pro-finite group is a compact Hausdorff space: since all finite discrete spaces are compact Hausdorff spaces, their product will be a compact Hausdorff space by Tychonoff's theorem; the direct limit is a closed subset of this product and is therefore also compact Hausdorff.

Every pro-finite group is totally disconnected and even more: a topological group is pro-finite if and only if it is Hausdorff, compact and totally disconnected.

Every product of (arbitrarily many) pro-finite groups is pro-finite; the topology arising from the pro-finiteness agrees with the product topology. Every closed subgroup of a pro-finite group is itself pro-finite; the topology arising from the pro-finiteness agrees with the subspace topology. If N is a closed normal subgroup of a pro-finite group G, then the factor group G/N is pro-finite; the topology arising from the pro-finiteness agrees with the quotient topology.

Given an arbitrary group G, there is a related pro-finite group G^, the pro-finite completion of G. It is defined as the inverse limit of the groups G/N, where N runs through the normal subgroups in G of finite index (these normal subgroups are partially ordered by inclusion, which translates into an inverse system of natural homomorphisms between them). There is a natural homomorphism η : GG^, and the image of G under this homomorphism is dense in G^. The homomorphism η is injective if and only if the group G is residually finite (i.e. iff for every non-identity element g in G there exists a normal subgroup N in G of finite index that doesn't contain g). The homomorphism η is characterized by the following universal property: given any pro-finite group H and any group homomorphism f : GH, there exists a unique continuous group homomorphism g : G^H with f = gη.

Since every pro-finite group G is compact Hausdorff, we have a Haar measure on G, which allows us to measure the "size" of subsets of G, compute certain probabilities, and integrate functions on G.

Ind-finite groups

There is a notion of ind-finite group, which is the concept dual to pro-finite groups; i.e. a group G is ind-finite if it is the direct limit of finite groups. The usual terminology is different: a group G is called locally finite if every finitely-generated subgroup is finite. This is equivalent, in fact, to being 'ind-finite'.

By applying Pontryagin duality, one can see that abelian pro-finite groups are in duality with locally finite discrete abelian groups. The latter are just the abelian torsion groups.

See also: locally cyclic group.

Further reading

  • Hendrik Lenstra: Profinite Groups, talk given in Oberwolfach, November 2003. online version (http://math.berkeley.edu/~jvoight/notes/oberwolfach/Lenstra-Profinite.pdf).
  • Alexander Lubotzky: review of several books about pro-finite groups. Bulletin of the American Mathematical Society, 38 (2001), pages 475-479. online version (http://www.ams.org/bull/2001-38-04/S0273-0979-01-00914-4/home.html).es:Grupo pro-finito
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools