Polynomial ring

In abstract algebra, a polynomial ring is the set of polynomials in one or more variables with coefficients in a ring.

Contents

Definition of a polynomial

In real analysis, a polynomial is a certain type of a function of one or several variables (see polynomial), or in other words, a polynomial function.

This definition cannot be adapted to a general ring, however. For example, over the ring Z/2Z of integers modulo 2, the polynomial

P(X)=X2+X=X(X+1)

takes only the value 0, as when k is an integer, k(k+1) is always even. But we would expect P(X) to be different than the zero polynomial.

The approach taken is then the following. Let R be a ring. A polynomial P(X) is defined to be a formal expression of the form

<math>P(X) = a_m X^m + a_{m - 1} X^{m - 1} + \cdots + a_1 X + a_0<math>

where the coefficients a0, ..., am are elements of the ring R, and X is considered to be a formal symbol. Two polynomials are considered to be equal if and only if the corresponding coefficients for each power of X are equal. Polynomials with coefficients in R can be added by simply adding the corresponding coefficients and multiplied using the distributive law, and the rules

<math> X\, a = a\, X<math>

for all elements a of the ring R and

<math> X^k\, X^l = X^{k+l}<math>

for all natural numbers k and l.

The polynomial ring

One can then check that the set of all polynomials with coefficients in the ring R forms itself a ring, the polynomial ring over R, which is denoted by R[X]. If R is commutative, then R[X] is an algebra over R.

One can think of the ring R[X] as arising from R by adding one new element X to R and only requiring that X commute with all elements of R. In order for R[X] to form a ring, all sums of powers of X have to be included as well.

The polynomial ring in several variables

Given two variables X and Y, one constructs the polynomial ring R[X], and then, on top of it, the ring (R[X])[Y]. This ring is considered the polynomial ring in the two variables R[X,Y].

For example, the polynomial

<math>P(X, Y)=X^2Y^2+4XY^2+5X^3-8Y^2+6XY-2Y+7<math>

is thought of as the polynomial

<math>(X^2+4X-8)Y^2+(6X-2)Y+(5X^3+7)<math>

in Y with coefficients in R[X].

In similar fashion, the ring R[X1, ..., Xn] in n variables X1, ..., Xn is constructed.

Equivalent definition

Polynomials in n variables can also be defined as functions from Nn into R which are zero everywhere except for a finite number of points, with the addition and R-multiplication defined in the canonical way, and multiplication defined by the convolution product

<math>P * Q : k\mapsto\sum_{i+j=k} P_i\,Q_j ~,<math>

where i,j,kNn are the (multi-)indices corresponding to respective powers of the indeterminates (and <math>P_i,Q_j<math> are the associated coefficients of the respective polynomial).

The link with the traditional notation is made by writing as <math>X_p^q<math> the elements of the canonical basis of this free module, which are the functions associating to a vector (0...0,q,0...0) of Nn the value 1R, and zero to any other vector of Nn (where q is in the p-th place of the vector).

Properties

Some uses of polynomial rings

Factoring out ideals from a polynomial ring is an important tool for constructing new rings out of known ones.

For instance, the clean construction of finite fields involves the use of those operations, starting out with the field of integers modulo some prime number as the coefficient ring R (see modular arithmetic).

An interesting example of a ring obtained by using polynomials is the ring of Frobenius polynomials, where the ring multiplication is given by function composition, rather than by polynomial multiplication.de:Polynomring

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools