Polygamma function
|
In mathematics, the polygamma function of order m is defined as the m+1 'th derivative of the logarithm of the gamma function:
- <math>\psi^{(m)}(z) = \left(\frac{d}{dz}\right)^m \psi(z) = \left(\frac{d}{dx}\right)^{m+1} \log\Gamma(z)<math>
Here
- <math>\psi(z) =\psi^0(z) = \frac{\Gamma'(z)}{\Gamma(z)}<math>
is the digamma function and <math>\Gamma(z)<math> is the gamma function.
It has the recurrence relation
- <math>\psi^{(m)}(z+1)= \psi^{(m)}(z) + (-1)^m\; m!\; z^{-(m+1)}<math>
It is related to the Hurwitz zeta function
- <math>\psi^{(m)}(z) = (-1)^{m+1}\; m!\; \zeta (m+1,z)<math>
The Taylor series at z=1 is
- <math>\psi^{(m)}(z+1)= \sum_{k=0}^\infty
(-1)^{m+k+1} (m+k)!\; \zeta (m+k+1)\; \frac {z^k}{k!}<math>, which converges for |z|<1. Here, <math>\zeta(n)<math> is the Riemann zeta function.
See also
References
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. ISBN 486-61272-4 . See section §6.4 (http://www.math.sfu.ca/~cbm/aands/page_260.htm)es:Función poligamma