Peg solitaire

Missing image
Solitaire.JPG
Solitaire

Peg Solitaire is a solitaire-type puzzle game for one player involving movement of pegs on a board with holes. The game is known simply as Solitaire in the United Kingdom where the card games are called Patience. Some sets use marbles in a board with indentations.

There are two traditional boards:

   English          European
    · · ·             · · ·
    · · ·           · · · · ·
· · · · · · ·     · · · · · · ·
· · · · · · ·     · · · · · · ·
· · · · · · ·     · · · · · · ·
    · · ·           · · · · ·
    · · ·             · · ·

The standard game fills the entire board with pegs except for the central hole. The objective is, making valid moves, to empty the entire board except for a solitary peg in the central hole.

A valid move is to jump a peg orthogonally over an adjacent peg into a hole two positions away and then to remove the jumped peg.

In the diagrams which follow, * is used to indicate a peg (in a hole) and · indicates an empty hole.

Thus valid moves in each of the four orthogonal directions are:


* * ·  ->  · · *  Jump to right
· * *  ->  * · ·  Jump to left 
*      ·
*  ->  ·  Jump down
·      *
·      *
*  ->  ·  Jump up
*      ·

On an English board, the first three moves might be:

    * * *             * * *             * * *             * * *        
    * * *             * · *             * · *             * * *        
* * * * * * *     * * * · * * *     * · · * * * *     * · · · * * *    
* * * · * * *     * * * * * * *     * * * * * * *     * * * · * * *    
* * * * * * *     * * * * * * *     * * * * * * *     * * * * * * *    
    * * *             * * *             * * *             * * *        
    * * *             * * *             * * *             * * *        

It is very easy to go wrong and find you have two or three widely spaced lone pegs. Many people never manage to solve the problem.

Template:Solution This article includes one solution to the English standard game.

There are many different solutions to the standard problem, and one notation used to describe them assigns letters to the holes:

   English          European
    a b c             a b c
    d e f           y d e f z
g h i j k l m     g h i j k l m
n o p x P O N     n o p x P O N
M L K J I H G     M L K J I H G
    F E D           Z F E D Y
    C B A             C B A

This mirror image notation is used, amongst other reasons, since on the European board, one set of alternative games is to start with a hole at some position and to end with a single peg in its mirrored position. On the English board the equivalent alternative games are to start with a hole and end with a peg at the same position.

One solution of the standard English game is:

  1. e-x
  2. l-j
  3. c-k
  4. P-f
  5. D-P
  6. G-I
  7. J-H
  8. m-G-I
  9. i-k
  10. g-i
  11. L-J-H-l-j-h
  12. C-K
  13. p-F
  14. A-C-K
  15. M-g-i
  16. a-c-k-I
  17. d-p-F-D-P-p
  18. o-x

To see the above solution illustrated, go to Solution to peg solitaire.

Note that following the solution in reverse, that is, o-x, P-p, D-P, F-D, p-F, d-p, k-I, etc... also works.

A tactic that can be used is to divide the board into packages of three and to purge (remove) them entirely using one extra peg, the catalyst, that jumps out and then jumps back again. In the example below, the * is the catalyst.:

* * ·      · · *      · * *      * · ·
  *    ->    *    ->    ·    ->    ·
  *          *          ·          ·

This technique can be used with a line of 3, a block of 2*3 and a 6-peg L shape with a base of length 3 and upright of length 4.

Other alternate games include starting with two empty holes and finishing with two pegs in those holes. Also starting with one hole here and ending with one peg there. On a English board, the hole can be anywhere and the final peg can only end up where multiples of three permit. Thus a hole at a can only leave a single peg at a, p, O or C.

A thorough analysis of the game is provided in Winning Ways ISBN 01120911027 in the UK and ISBN 156881142 in the US.

Peg solitaire has been played on other size boards, although the two given above are the most popular. It has also been played on a triangular board, with jumps allowed in all 3 directions. As long as the variant has the proper "parity" and is large enough, it will probably be solvable.


Some solutions

In these, the notation used is

  • List of starting holes
  • Colon
  • List of end target pegs
  • Equals sign
  • Source peg and destination hole (you have to work out what it jumps over yourself)
  • , or / (a slash is used to separate 'chunks' such as a six-purge out)
x:x=ex,lj,ck,Pf,DP,GI,JH,mG,GI,ik,gi,LJ,JH,Hl,lj,jh,CK,pF,AC,CK,Mg,gi,ac,ck,kI,dp,pF,FD,DP,Pp,ox
x:x=ex,lj,xe/hj,Ki,jh/ai,ca,fd,hj,ai,jh/MK,gM,hL,Fp,MK,pF/CK,DF,AC,JL,CK,LJ/PD,GI,mG,JH,GI,DP/Ox
j:j=lj,Ik,jl/hj,Ki,jh/mk,Gm,Hl,fP,mk,Pf/ai,ca,fd,hj,ai,jh/MK,gM,hL,Fp,MK,pF/CK,DF,AC,JL,CK,LJ/Jj
i:i=ki,Jj,ik/lj,Ik,jl/AI,FD,CA,HJ,AI,JH/mk,Hl,Gm,fP,mk,Pf/ai,ca,fd,hj,ai,jh/gi,Mg,Lh,pd,gi,dp/Ki
e:e=xe/lj,Ik,jl/ck,ac,df,lj,ck,jl/GI,lH,mG,DP,GI,PD/AI,FD,CA,JH,AI,HJ/pF,MK,gM,JL,MK,Fp/hj,ox,xe
d:d=fd,xe,df/lj,ck,ac,Pf,ck,jl/DP,KI,PD/GI,lH,mG,DP,GI,PD/CK,DF,AC,LJ,CK,JL/MK,gM,hL,pF,MK,Fp/pd
b:b=jb,lj/ck,ac,Pf,ck/DP,GI,mG,JH,GI,PD/LJ,CK,JL/MK,gM,hL,pF,MK,Fp/xo,dp,ox/xe/AI/BJ,JH,Hl,lj,jb
b:x=jb,lj/ck,ac,Pf,ck/DP,GI,mG,JH,GI,PD/LJ,CK,JL/MK,gM,hL,pF,MK,Fp/xo,dp,ox/xe/AI/BJ,JH,Hl,lj,ex
a:a=ca,jb,ac/lj,ck,jl/Ik,pP,KI,lj,Ik,jl/GI,lH,mG,DP,GI,PD/CK,DF,AC,LJ,CK,JL/dp,gi,pd,Mg,Lh,gi/ia
a:p=ca,jb,ac/lj,ck,jl/Ik,pP,KI,lj,Ik,jl/GI,lH,mG,DP,GI,PD/CK,DF,AC,LJ,CK,JL/dp,gi,pd,Mg,Lh,gi/dp

Brute force attack on standard English peg solitaire

The only place it is possible to end up with a solitary peg, is the centre, or the middle of one of the edges; on the last jump, there will always be an option of choosing whether to end in the centre or the edge.

Following is a table over the number (Possible Board Positions) of possible board positions after n jumps, and the number (No Further Jumps) of those board positions, from which no further jumps are possible.

If one board position can be rotated and/or flipped into another board position, the board positions are counted as identical.

nPBPNFJ
110
220
380
4390
51710
67191
72,7570
89,7510
931,3120
1089,9271
   
nPBPNFJ
1122,96141
12517,8540
131,022,2245
141,753,73710
152,598,2157
163,312,42327
173,626,63247
183,413,313121
192,765,623373
201,930,324925
   
nPBPNFJ
211,160,9771,972
22600,3723,346
23265,8654,356
24100,5654,256
2532,2503,054
268,6881,715
271,917665
28348182
295039
3076
   
nPBPNFJ
3122

Since the maximum number of board positions at any jump is 3,626,632, and there can only be 31 jumps, modern computers can easily examine all game positions in a reasonable time.

External Links

he:מחשבת ja:ペグ・ソリテール

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools