Paley-Wiener theorem

In mathematics the Paley-Wiener theorem relates growth properties of entire functions on Cn and Fourier transformation of Schwartz distributions of compact support.

Generally, the Fourier transform can be defined for any tempered distribution; moreover, any distribution of compact support v is a tempered distribution. If v is a distribution of compact support and f is an infinitely differentiable function, the expression

<math> v(f) = v_x \left(f(x)\right) <math>

is well defined. In the above expression the variable x in vx is a dummy variable and indicates that the distribution is to be applied with the argument function considered as a function of x.

It can be shown that the Fourier transform of v is a function (as opposed to a general tempered distribution) given at the value s by

<math> \hat{v}(s) = (2 \pi)^{-n/2} v_x\left(e^{-i \langle x, s\rangle}\right)<math>

and that this function can be extended to values of s in the complex space Cn. This extension of the Fourier transform to the complex domain is called the Fourier-Laplace transform.

Theorem. An entire function F on Cn is the Fourier-Laplace transform of distribution v of compact support if and only if for all zCn,

<math> |F(z)| \leq C (1 + |z|)^N e^{B| \mathfrak{Im} z|} <math>

for some constants C, N, B. The distribution v in fact will be supported in the closed ball of center 0 and radius B.

Additional growth conditions on the entire function F impose regularity properties on the distribution v: For instance, if for every positive N there is a constant CN such that for all zCn,

<math> |F(z)| \leq C_N (1 + |z|)^{-N} e^{B| \mathfrak{Im} z|} <math>

then v is infinitely differentiable and conversely.

The theorem is named for Raymond Paley (1907 - 1933) and Norbert Wiener. Their formulations were not in terms of distributions, a concept not at the time available. The formulation presented here is attributed to Lars Hormander.

In another version, the Paley-Wiener theorem explicitly describes the Hardy space <math>H^2(\mathbf{R})<math> using the unitary Fourier transform <math>\mathcal{F}<math>. The theorem states that

<math> \mathcal{F}H^2(\mathbf{R})=L^2(\mathbf{R_+})<math>.

This is a very useful result as it enables one pass to the Fourier transform of a function in the Hardy space and perform calculations in the easily understood space <math>L^2(\mathbf{R_+})<math> of square-integrable functions supported on the positive axis.

References

See section 3 Chapter VI of

  • K. Yosida, Functional Analysis, Academic Press, 1968

See also Theorem 1.7.7 in

  • L. Hormander, Linear Partial Differential Operators, Springer Verlag, 1976
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools