Normal function

In axiomatic set theory, a function f : Ord → Ord is called normal (or a normal function) iff it is continuous (with respect to the order topology) and strictly mononotically increasing. This is equivalent to the following two conditions:

  1. For every infinite limit ordinal γ, f(γ) = sup {f(ν) : ν < γ}.
  2. For all ordinals α < β, f(α) < f(β).

Examples

A simple normal function is given by f(α) = 1 + α; note however that f(α) = α + 1 is not normal. If β is a fixed ordinal, then the functions f(α) = β + α, f(α) = β × α and f(α) = βα (for β > 1) are all normal.

More important examples of normal functions are given by the aleph numbers f(α) = ‭א‬α which connect ordinal and cardinal numbers, and by the beth numbers f(α) = <math>\beth_\alpha<math>.

Facts

If f is normal, then for any α ∈ Ord,

f(α) ≥ α.

(Proof: if this was not the case, we could choose a minimal γ with f(α) < α; then, since f is strictly monotonically increasing, f(f(α)) < f(α), which is a contradiction to α being minimal.)

Furthermore, for any non-empty set S of ordinals, we have

f(sup S) = sup f(S).

(Proof: "≥" follows from the monotonicity of f and the definition of the supremum. For "≤", we set δ = sup S and distinguish three cases:

  • if δ = 0, then S={0} and sup f(S) = f(0);
  • if δ = ν + 1, then there exists s in S with ν < s, implying δ ≤ s and so f(δ) ≤ f(s), which implies f(δ) ≤ sup f(S);
  • if δ is an infinite limit ordinal, we pick any ν < δ, then find s in S with ν < s (since δ = sup S) and hence f(ν) < f(s), implying f(ν) < sup f(S) and therefore f(δ) = sup { f(ν) : ν < δ } ≤ sup f(S) as desired.)

Every normal function f has arbitrarily large fixed points; see the fixed-point lemma for normal functions for a proof. One can thus create a new function g : Ord → Ord, colloquially described as "g(α) is the α-th fixed point of f". The function g is again normal.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools