Multi-index notation

The notion of multi-indices simplifies formulae used in the multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an array of indices.

An n-dimensional multi-index is a vector

<math>\alpha = (\alpha_{1}, \alpha_{2},\ldots,\alpha_{n})<math>

with integers <math>\alpha_{i}<math>. For multi-indices <math>\alpha, \beta \in \mathbb{N}^n<math> and <math>\mathbf{x} = (x_{1}, x_{2}, \ldots, x_{n}) \in \mathbb{R}^n<math> one defines:

<math>\alpha \pm \beta:= (\alpha_{1} \pm \beta_{1},\,\alpha_{2} \pm \beta_{2}, \ldots, \,\alpha_{n} \pm \beta_{n})<math>
<math>\alpha \le \beta \quad \Leftrightarrow \quad \alpha_{i} \le \beta_{i} \quad \forall\,i<math>
<math>| \alpha | = \alpha_{1} + \alpha_{2} + \ldots + \alpha_{n}<math>
<math>\alpha ! = \alpha_{1}! \alpha_{2}! \ldots \alpha_{n}!<math>
<math>{\alpha \choose \beta} = \frac{\alpha!}{(\alpha - \beta)! \, \beta!}={\alpha_{1} \choose \beta_{1}}{\alpha_{2} \choose \beta_{2}}\ldots{\alpha_{n} \choose \beta_{n}}<math>
<math>\mathbf{x}^\alpha = x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}<math>
<math>D^{\alpha} := D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{n}^{\alpha_{n}}<math> where <math>D_{i}^{j}:=\partial^{j} / \partial x_{i}^{j}<math>

The notation allows to extend many formula from elementary calculus to the corresponding multi-variable case. Some examples of common applications of multi-index notations:

Multinomial expansion:

<math> \left( \sum_{i=1}^{n}{x_i}\right)^k = \sum_{|\alpha|=k}^{}{\frac{k!}{\alpha!} \, \mathbf{x}^{\alpha}} <math>

Leibniz formula: for smooth functions u, v

<math>D^{\alpha}(uv) = \sum_{\nu \le \alpha}^{}{{\alpha \choose \nu}D^{\nu}u\,D^{\alpha-\nu}v}<math>

Taylor series: for an analytic function f one has

<math>f(\mathbf{x}+\mathbf{h}) = \sum_{|\alpha| \ge 0}^{}{\frac{D^{\alpha}f(\mathbf{x})}{\alpha !}\mathbf{h}^{\alpha}}<math>

A formal N-th order partial differential operator in n variables is written as

<math>P(D) = \sum_{|\alpha| \le N}{}{a_{\alpha}(x)D^{\alpha}}<math>

Partial integration: for smooth functions with compact support in a bounded domain <math>\Omega \subset \mathbb{R}^n<math> one has

<math>\int_{\Omega}{}{u(D^{\alpha}v)}\,dx = (-1)^{|\alpha|}\int_{\Omega}^{}{(D^{\alpha}u)v\,dx}<math>

This formula is used for the definition of distributions and weak derivatives.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools