Minor (linear algebra)

From Academic Kids

(Redirected from Minor (mathematics))

In linear algebra, a minor of a matrix is the determinant of a certain smaller matrix. Suppose A is an m×n matrix and k is a positive integer not larger than m and n. A k×k minor of A is the determinant of a k×k matrix obtained from A by deleting m-k rows and n-k columns.

Since there are C(m,k) choices of k rows out of m, and there are C(n,k) choices of k columns out of n, there are a total of C(m,k)C(n,k) minors of size k×k.

Especially important are the (n-1)×(n-1) minors of an n×n square matrix - these are often denoted Mij, and are derived by removing the ith row and the jth column.

The cofactors of a square matrix A are closely related to the minors of A: the cofactor Cij of A is defined as (-1)i+j times the minor Mij of A.

For example, given the matrix

<math>\begin{pmatrix}

1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \\ \end{pmatrix}<math>

and suppose we wish to find the cofactor C23. We consider the matrix with row 2 and column 3 removed (note the following is not standard notation!):

<math>\begin{pmatrix}

1 & 4 & ! \\ ! & ! & ! \\ -1 & 9 & ! \\ \end{pmatrix}<math>

This gives:

<math>C_{23}=(-1)^{2+3}\begin{vmatrix}

1 & 4 \\ -1 & 9 \\ \end{vmatrix}=(-1)(9+4)=-13.<math>

The cofactors feature prominently in Laplace's formula for the expansion of determinants. If all the cofactors of a square matrix A are collected to form a new matrix of the same size, one obtains the adjugate of A, which is useful in calculating the inverse of small matrices.

Given an m×n matrix with real entries (or entries from any other field) and rank r, then there exists at least one non-zero r×r minor, while all larger minors are zero.

We will use the following notation for minors: if A is an m×n matrix, I is a subset of {1,...,m} with k elements and J is a subset of {1,...,n} with k elements, then we write [A]I,J for the k×k minor of A that corresponds to the rows with index in I and the columns with index in J.

Both the formula for ordinary matrix multiplication and the Cauchy-Binet formula for the determinant of the product of two matrices are special cases of the following general statement about the minors of a product of two matrices. Suppose that A is an m×n matrix, B is an n×p matrix, I is a subset of {1,...,m} with k elements and J is a subset of {1,...,p} with k elements. Then

<math>[AB]_{I,J} = \sum_{K} [A]_{I,K} [B]_{K,J}\,<math>

where the sum extends over all subsets K of {1,...,n} with k elements. This formula is a straight-forward corollary of the Cauchy-Binet formula.

A more systematic, algebraic treatment of the minor concept is given in multilinear algebra, using the wedge product. If the columns of a matrix are wedged together k at a time, the k×k minors appear as the components of the resulting k-vectors. For example, the 2×2 minors of the matrix

<math>\begin{pmatrix}

1 & 4 \\ 3 & -1 \\ 2 & 1 \\ \end{pmatrix}<math> are -13 (from the first two rows), -7 (from the first and last row), and 5 (from the last two rows). Now consider the wedge product

<math>(\mathbf{e}_1 + 3\mathbf{e}_2 +2\mathbf{e}_3)\wedge(4\mathbf{e}_1-\mathbf{e}_2+\mathbf{e}_3)<math>

where the two expressions correspond to the two columns of our matrix. Using the properties of the wedge product, namely that it is bilinear and

<math>\mathbf{e}_i\wedge \mathbf{e}_i = 0<math>

and

<math>\mathbf{e}_i\wedge \mathbf{e}_j = - \mathbf{e}_j\wedge \mathbf{e}_i,<math>

we can simplify this expression to

<math> -13 \mathbf{e}_1\wedge \mathbf{e}_2 -7 \mathbf{e}_1\wedge \mathbf{e}_3 +5 \mathbf{e}_2\wedge \mathbf{e}_3<math>

where the coefficients agree with the minors computed earlier.


In graph theory, the term minor has a different, unrelated meaning. See minor (graph theory).de:Minor (Mathematik) pl:Minor macierzy

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools