Clay Mathematics Institute

The Clay Mathematics Institute (CMI) is a private, nonprofit foundation, based in Cambridge, Massachusetts, and dedicated to increasing and disseminating mathematical knowledge. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 by businessman Landon T. Clay, who financed it, and Harvard mathematician Arthur Jaffe.
Contents 
The Millennium Prize problems
The institute is best known for its establishment on May 24, 2000 of the Millennium Prize problems. These seven problems are considered by CMI to be "important classic questions that have resisted solution over the years". The first person to solve each problem will be awarded $1,000,000 by CMI  thus solving all the problems will amount to $7,000,000. In announcing the prize, CMI drew a parallel to Hilbert's problems, which were proposed in 1900, and had a substantial impact on 20th century mathematics.
The seven Millennium Prize problems are:
 P versus NP
 The Hodge conjecture
 The Poincaré conjecture
 The Riemann hypothesis
 YangMills existence and mass gap
 NavierStokes existence and smoothness
 The Birch and SwinnertonDyer conjecture
P versus NP
The question is whether there are any problems for which a computer can check an answer quickly, but cannot find the answer quickly. This is generally considered the most important open question in theoretical computer science. See complexity classes P and NP for a more complete discussion.
The Hodge conjecture
The Hodge conjecture is that for projective algebraic varieties, Hodge cycles are rational linear combinations of algebraic cycles.
The Poincaré conjecture
In topology, a sphere with a twodimensional surface is essentially characterized by the fact that it is simply connected. The Poincaré conjecture is that this is also true for spheres with threedimensional surfaces. The question has been solved for all dimensions above three. Solving it for three is central to the problem of classifying 3manifolds. A solution to this conjecture has been proposed by Grigori Perelman; while still not formally published, there does appear to be a growing consensus that the argument is largely correct.
The Riemann hypothesis
The Riemann hypothesis is that all nontrivial zeros of the Riemann zeta function have a real part of 1/2. A proof or disproof of this would have farreaching implications in number theory, especially for the distribution of prime numbers. This was Hilbert's eighth problem, and is still considered an important open problem a century later.
YangMills existence and mass gap
In physics, quantum YangMills theory describes particles with positive mass having classical waves traveling at the speed of light. This is the mass gap. The problem is to establish the existence of the YangMills theory and a mass gap.
NavierStokes existence and smoothness
The NavierStokes equations describe the movement of liquids and gases. Although they were found in the 19th century, they still are not well understood. The problem is to make progress toward a mathematical theory that will give us insight into these equations.
The Birch and SwinnertonDyer conjecture
The Birch and SwinnertonDyer conjecture deals with a certain type of equation, those defining elliptic curves over the rational numbers. The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. Hilbert's tenth problem dealt with a more general type of equation, and in that case it was proved that there is no way to decide whether a given equation even has any solutions.
Other activities
Besides the Millennium Prize Problems, the Clay Mathematics Institute also supports mathematics via the awarding of research fellowships (which range from two to five years, and are aimed at younger mathematicians), as well as shorterterm scholarships for programs, individual research, and book writing. The Institute also has a yearly Clay Research Award, recognizing major breakthroughs in mathematical research. Finally, the Institute also organizes a number of summer schools, conferences, workshops, public lectures, and outreach activities aimed primarily at junior mathematicians (from the high school to postdoctoral level).
External links
 The Clay Mathematics Institute (http://www.claymath.org)
 The Millennium Prize Problems (http://www.claymath.org/prizeproblems)de:MillenniumProbleme
es:Clay Mathematics Institute it:Premio Clay ja:クレイ数学研究所 zh:克雷數學研究所