Matrix addition
|
The usual matrix addition is defined for two matrices of same dimensions. The sum of two m-by-n matrices A and B, denoted by A + B, is again an m-by-n matrix computed by adding corresponding elements, i.e., (A + B)[i, j] = A[i, j] + B[i, j]. For example
- <math>
\begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}
+
\begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix}
=
\begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix}
=
\begin{bmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{bmatrix}
<math>
The m × n matrices with matrix addition as operation form an abelian group.
For any arbitrary matrices A (of size m × n) and B (of size p × q), we have the direct sum of A and B, denoted by <math>A \oplus B<math> and defined as
- <math>
A \oplus B = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ a_{m 1} & \cdots & a_{mn} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1q} \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & b_{p1} & \cdots & b_{pq} \end{bmatrix}
<math>
For instance,
- <math>
\begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{bmatrix}
\oplus
\begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}
=
\begin{bmatrix} 1 & 3 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
<math>
Note that any element in the direct sum of two vector spaces of matrices could be represented as a direct sum of two matrices.fr:Addition des matrices sv:Matrisaddition