Lucas sequence

In mathematics a Lucas sequence is a particular generalisation of the Fibonacci numbers and Lucas numbers. Lucas sequences were first studied by French mathematician Edouard Lucas.

Contents

Recurrence relations

Given two integer parameters P and Q which satisfy

<math>P^2 - 4Q > 0<math>

the Lucas sequences U(P,Q) and V(P,Q) are defined by the recurrence relations

<math>U_0(P,Q)=0<math>
<math>U_1(P,Q)=1<math>
<math>U_n(P,Q)=PU_{n-1}(P,Q)-QU_{n-2}(P,Q) \mbox{ for }n>1<math>

and

<math>V_0(P,Q)=2<math>
<math>V_1(P,Q)=P<math>
<math>V_n(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q) \mbox{ for }n>1<math>

Algebraic relations

If the roots of the characteristic equation

<math>x^2 - Px + Q=0<math>

are a and b then U(P,Q) and V(P,Q) can also be defined in terms of a and b by

<math>U_n(P,Q)= \frac{a^n-b^n}{a-b} = \frac{a^n-b^n}{ \sqrt{P^2-4Q}}<math>
<math>V_n(P,Q)=a^n+b^n<math>

from which we can derive the relations

<math>a^n = \frac{V_n + U_n \sqrt{P^2-4Q}}{2}<math>
<math>b^n = \frac{V_n - U_n \sqrt{P^2-4Q}}{2}<math>

Other relations

The numbers in Lucas sequences satisfy relations that are analogues of the relations between Fibonacci numbers and Lucas numbers. For example :-

<math>U_n = \frac{V_{n-1} + V_{n+1}}{P^2-4Q}<math>
<math>V_n = U_{n-1} + U_{n+1}<math>
<math>U_{2n} = U_n V_n<math>
<math>V_{2n} = V_n^2 - 2Q^n<math>

Specific names

The Lucas sequences for some values of P and Q have specific names :-

Un(1,−1) : Fibonacci numbers
Vn(1,−1) : Lucas numbers
Un(2,−1) : Pell numbers
Un(1,−2) : Jacobsthal numbersde:Lucas-Folge

fr:Suite_de_Lucas

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools