List of equations in classical mechanics
|
This page gives a summary of important equations in classical mechanics.
Contents |
Nomenclature
- a = acceleration (m/s²)
- g = gravitational constant (m/s²)
- F = force (N = kg m/s²)
- Ek = kinetic energy (J = kg m²/s²)
- Ep = potential energy (J = kg m²/s²)
- m = mass (kg)
- p = momentum (kg m/s)
- s = position (m)
- R = radius (m)
- t = time (s)
- v = velocity (m/s)
- v0 = velocity at time t=0
- W = work (J = kg m²/s²)
- τ = torque (J = N m) (torque is the rotational form of force)
- s(t) = position at time t
- s0 = position at time t=0
- runit = unit vector pointing from the origin in polar coordinates
- θunit = unit vector pointing in the direction of increasing values of theta in polor coordinates
Note: All quantities in bold represent vectors.
Defining Equations
Center of Mass
In the discrete case:
- <math>\mathbf{s}_{\hbox{CM}} = {1 \over m_{\hbox{total}}} \sum_{i = 0}^{n} m_i \mathbf{s}_i<math>
where <math>n<math> is the number of mass particles.
Or in the continuous case:
- <math>\mathbf{s}_{\hbox{CM}} = {1 \over m_{\hbox{total}}} \int \rho(\mathbf{s}) dV<math>
where ρ(s) is the scalar mass density as a function of the position vecto
Velocity
- <math>\mathbf{v}_{\mbox{average}} = {\Delta \mathbf{s} \over \Delta t}<math>
- <math>\mathbf{v} = {d\mathbf{s} \over dt}<math>
Acceleration
- <math>\mathbf{a}_{\mbox{average}} = \frac{\Delta\mathbf{v}}{\Delta t} <math>
- <math>\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{s}}{dt^2} <math>
- Centripetal Acceleration
- <math> |\mathbf{a}_c | = \omega^2 R = v^2 / R <math>
(R = radius of the circle, ω = v/R angular velocity)
Momentum
- <math>\mathbf{p} = m\mathbf{v}<math>
Force
- <math> \sum \mathbf{F} = \frac{d\mathbf{p}}{dt} = \frac{d(m\mathbf{v})}{dt} <math>
- <math> \sum \mathbf{F} = m\mathbf{a} \quad\ <math> (Constant Mass)
Impulse
- <math> \mathbf{J} = \Delta \mathbf{p} = \int \mathbf{F} dt <math>
- <math> \mathbf{J} = \mathbf{F} \Delta t \quad\ <math>if F is constant
Moment of Intertia
For a single axis of rotation: The moment of inertia for an object is the sum of the products of the mass element and the square of their distances from the axis of rotation:
<math>I = \sum r_i^2 m_i =\int_M r^2 \mathrm{d} m = \iiint_V r^2 \rho(x,y,z) \mathrm{d} V<math>
Angular Momentum
- <math> |L| = mvr \quad\ <math> if v is perpendicular to r
Vector form:
- <math> \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{I}\, \omega <math>
(Note: I can be treated like a vector if it is diagonalized first, but it is actually a 3×3 matrix - a tensor of rank-2)
r is the radius vector
Torque
- <math> \sum \boldsymbol{\tau} = \frac{d\mathbf{L}}{dt} <math>
- <math> \sum \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F} \quad <math>
if |r| and the sine of the angle between r and p remains constant.
- <math> \sum \boldsymbol{\tau} = \mathbf{I} \boldsymbol{\alpha} <math>
This one is very limited, more added later. α = dω/dt
Precession
Energy
m is here constant.
- <math> \Delta E_k = \int \mathbf{F}_{\mbox{net}} \cdot d\mathbf{s} = \int \mathbf{v} \cdot d\mathbf{p} = \begin{matrix}\frac{1}{2}\end{matrix} mv^2 - \begin{matrix}\frac{1}{2}\end{matrix} m{v_0}^2 \quad\ <math>
- <math> \Delta E_p = mgh \quad\ \,\!<math> in field of gravity
Central Force Motion
- <math>\frac{d^2}{d\theta^2}\left(\frac{1}{\mathbf{r}}\right) + \frac{1}{\mathbf{r}} = -\frac{\mu\mathbf{r}^2}{\mathbf{l}^2}\mathbf{F}(\mathbf{r})<math>
Gravitational Force
- <math>\mathbf{F(r)} = -\frac{\mathbf{Gm_1}\mathbf{m_2}}{\mathbf{r^2}}<math>
- G is the gravitational constant, one of the physical constants
Useful derived equations
Position of an accelerating body
- <math> \mathbf{s}(t) = \begin{matrix}\frac{1}{2}\end{matrix} \mathbf{a} t^2 + \mathbf{v}_0 t + \mathbf{s}_0 \quad\ <math> if a is constant.
Equation for velocity
- <math> v^2 =v_0^2 + 2\mathbf{a} \cdot \Delta\mathbf{s}<math>