Lindemann-Weierstrass theorem

In mathematics, the Lindemann-Weierstrass theorem states that if α1,...,αn are algebraic numbers which are linearly independent over the rational numbers, then <math>e^{\alpha_1} \cdots e^{\alpha_n}<math> are algebraically independent over the algebraic numbers; in other words the set <math>{e^{\alpha_1} \cdots e^{\alpha_n}}<math> has transcendence degree n over <math>\Bbb{Q}<math>. An equivalent formulation of the theorem is the following one: If α1,...,αn are algebraic numbers, linearly independent over the rationals (and therefore necessarily distinct), then all the different monomial products <math>e^{m_1\alpha_1} \cdots e^{m_n\alpha_n}<math> with integer coefficients mi are linearly independent over the algebraic numbers. In reference [1] below the theorem is stated in the following form: If α1,...,αn are distinct algebraic numbers, then the exponentials <math>e^{\alpha_1},\ldots,e^{\alpha_n}<math> are linearly independent over the algebraic numbers.

The theorem is named for Ferdinand von Lindemann, who proved the particular result that π is transcendental, and Karl Weierstraß.

Transcendence of e and π

The transcendence of e and π are direct corollaries of this theorem. Suppose α is a nonzero algebraic number; then {α} is a linearly independent set over the rationals, and therefore {eα} has transcendence degree one over the rationals; or in other words eα is transcendental. Using the other formulation we can argue that if {0, α} is a set of distinct algebraic numbers, then the set {e0, eα} = {1, eα} is linearly independent over the algebraic numbers, and so eα is immediately seen to be transcendental. In particular, e1</sub> = e is transcendental. Also, if β = eiα is transcendental, so are the real and imaginary parts of β, Re(β) = (β + β−1)/2 and Im(β) = (β − β−1)/2i, and hence cos(α) = Re(β) and sin(α) = Im(β) are also. Therefore, if π were algebraic, cos(π) = −1 and sin(π) = 0 would be transcendental, which proves by contradiction π is not algebraic, and hence is transcendental.

p-adic conjecture

The p-adic Lindemann-Weierstrass conjecture is that this conjecture is also true for a p-adic analog: if α1,...,αn are a set of algebraic numbers linearly independent over the rationals such that <math>|\alpha_i|_p < 1/p<math> for some prime p, then the p-adic exponentials <math>e^{\alpha_1} \cdots e^{\alpha_n}<math> are algebraically independent transcendentals.

References

  1. Alan Baker, Transcendental Number Theory, Cambridge University Press, 1975, chapter 1, Theorem 1.4. ISBN: 0 521 39791.de:Satz von Lindemann-Weierstrass

fr:Théorème de Lindemann-Weierstrass sl:Lindemann-Weierstrassov izrek

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools