Levi-Civita symbol

In mathematics, and in particular in tensor calculus, the Levi-Civita symbol, also called the permutation symbol, is defined as follows:

<math>\epsilon_{ijk} =

\left\{ \begin{matrix} +1 & \mbox{if } (i,j,k) \mbox{ is } (1,2,3), (2,3,1) \mbox{ or } (3,1,2)\\ -1 & \mbox{if } (i,j,k) \mbox{ is } (3,2,1), (1,3,2) \mbox{ or } (2,1,3)\\ 0 & \mbox{otherwise: }i=j \mbox{ or } j=k \mbox{ or } k=i \end{matrix} \right. <math>

It is named after Tullio Levi-Civita. It is used in many areas of mathematics and physics. For example, in linear algebra, the cross product of two vectors can be written as a determinant:

<math>

\mathbf{a \times b} =

 \begin{vmatrix} 
   \mathbf{e_1} & \mathbf{e_2} & \mathbf{e_3} \\
   a_1 & a_2 & a_3 \\
   b_1 & b_2 & b_3 \\
 \end{vmatrix}

= \sum_{i,j,k=1}^3 \epsilon_{ijk} \mathbf{e_i} a_j b_k <math> or more simply:

<math>

\mathbf{a \times b} = \mathbf{c},\ c_i = \sum_{j,k=1}^3 \epsilon_{ijk} a_j b_k <math>

This can be further simplified by using Einstein notation.

The Levi-Civita symbol can be generalized to higher dimensions:

<math>\epsilon_{ijkl\dots} =

\left\{ \begin{matrix} +1 & \mbox{if }(i,j,k,l,\dots) \mbox{ is an even permutation of } (1,2,3,4,\dots) \\ -1 & \mbox{if }(i,j,k,l,\dots) \mbox{ is an odd permutation of } (1,2,3,4,\dots) \\ 0 & \mbox{if any two labels are the same} \end{matrix} \right. <math>

See even permutation or symmetric group for a definition of 'even permutation' and 'odd permutation'

The tensor whose components are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called the permutation tensor. It is actually a pseudotensor because it get a minus sign under orthogonal transformation of jacobian determinant -1 (i.e. a rotation composed with a reflection).

The Levi-Civita symbol is related to the Kronecker delta. In three dimensions, the relationship is given by the following equations:

<math>

\sum_{i=1}^3 \epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km} <math>

<math>

\sum_{i,j=1}^3 \epsilon_{ijk}\epsilon_{ijn} = 2\delta_{kn} <math> Furthermore, it can be shown that

<math>

\sum_{i,j,k,\dots=1}^n \epsilon_{ijk\dots}\epsilon_{ijk\dots} = n! <math> is always fulfilled in n dimensions. In index-free tensor notation, the Levi-Civita symbol is replaced by the concept of the Hodge dual.

References

es:Símbolo de Levi-Civita ko:레비-치비타 기호 it:Simbolo di Levi-Civita he:טנזור לוי-צ'יויטה pl:Symbol Leviego-Civity sl:Levi-Civitajev simbol

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools