Least common multiple

In arithmetic and number theory the least common multiple or lowest common multiple (lcm) or smallest common multiple of two integers a and b is the smallest positive integer that is a multiple of both a and b. If there is no such positive integer, e.g., if a = 0 or b = 0, then lcm(a, b) is defined to be zero.

The least common multiple is useful when adding or subtracting vulgar fractions, because it yields the lowest common denominator. Consider for instance

<math>{2\over21}+{1\over6}={4\over42}+{7\over42}={11\over42},<math>

where the denominator 42 was used because lcm(21, 6) = 42.

If a and b are not both zero, the least common multiple can be computed by using the greatest common divisor (gcd) of a and b:

<math>\operatorname{lcm}(a,b)=\frac{a\cdot b}{\operatorname{gcd}(a,b)}.<math>

Thus, the Euclidean algorithm for the gcd also gives us a fast algorithm for the lcm. To return to the example above,

<math>\operatorname{lcm}(21,6)={21\cdot6\over\operatorname{gcd}(21,6)}={126\over3}=42.<math>

Efficient calculation

The formula

<math>\operatorname{lcm}(a,b)=\frac{(a\cdot b)}{\operatorname{gcd}(a,b)}<math>

is adequate to calculate the lcm for small numbers using the formula as written.

Because that (ab)/c = a(b/c) = (a/c)b, one can calculate the lcm using the above formula more efficiently, by firstly exploiting the fact that b/c or a/c may be easier to calculate than the quotient of the product ab and c. This can be true whether the calculations are performed by a human, or a computer, which may have storage requirements on the variables a, b, c, where the limits may be 4 byte storage - calculating ab may cause an overflow, if storage space is not allocated properly.

Using this, we can then calculate the lcm by either using:

<math>\operatorname{lcm}(a,b)=\left({a\over\operatorname{gcd}(a,b)}\right)\cdot b<math>

or

<math>\operatorname{lcm}(a,b)=a\cdot\left({b\over\operatorname{gcd}(a,b)}\right).\,<math>

Done this way, the previous example becomes:

<math>\operatorname{lcm}(21,6)={21\over\operatorname{gcd}(21,6)}\cdot6={21\over3}\cdot6=7\cdot6=42.<math>

Alternative method

The unique factorization theorem says that every positive integer number greater than 1 can be written in only one way as a product of prime numbers. The prime numbers can be considered as the atomic elements which when combined together makes up a composite number.

For example:

<math>90 = 2^1 \cdot 3^2 \cdot 5^1 = 2 \cdot 9 \cdot 5 \,\!<math>

Here we have the composite number 90 made up of one atom of the prime number 2, two atoms of the prime number 3 and one atom of the prime number 5.

We can use this knowledge to easily find the lcm of a group of numbers.

For example: Find the value of lcm(45, 120, 75)

<math>45\; \, = 2^0 \cdot 3^2 \cdot 5^1 \,\!<math>
<math>120 = 2^3 \cdot 3^1 \cdot 5^1 \,\!<math>
<math>75\; \,= 2^0 \cdot 3^1 \cdot 5^2. \,\!<math>

The lcm is the number which has the greatest multiple of each different type of atom. Thus

<math>\operatorname{lcm}(45,120,75) = 2^3 \cdot 3^2 \cdot 5^2 = 8 \cdot 9 \cdot 25 = 1800. \,\!<math>

External links

es:Mínimo común múltiplo eo:Plej malgranda komuna oblo fr:Plus petit commun multiple ko:최소공배수 it:Minimo comune multiplo nl:Kleinste gemene veelvoud ja:最小公倍数 pl:Najmniejsza wspólna wielokrotność fi:Pienin yhteinen jaettava zh:最小公倍數

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools