Law of total expectation
|
The proposition in probability theory known as the law of total expectation, or the law of iterated expectations, or perhaps by any of a variety of other names, states that if X is an integrable random variable (i.e., a random variable satisfying E( | X | ) < ∞) and Y is any random variable, not necessarily integrable, on the same probability space, then
- <math>E(X) = E( E( X\mid Y)),<math>
i.e., the expected value of the conditional expected value of X given Y is the same as the expected value of X.
The nomenclature used here parallels the phrase law of total probability. See also law of total variance.
(The conditional expected value E( X | Y ) is a random variable in its own right, whose value depends on the value of Y. Notice that the conditional expected value of X given the event Y = y is a function of y (this is where adherence to the conventional rigidly case-sensitive notation of probability theory becomes important!). If we write E( X | Y = y) = g(y) then the random variable E( X | Y ) is just g(Y). )