Jones calculus

In optics one can describe polarisation using the Jones calculus, invented by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarisation of the emerging light is simply the Jones matrix of the optical element multiplied by the Jones vector of the incident light.

The following table gives examples of Jones vectors. (<math>i<math> is the imaginary unit, i.e., <math>\sqrt{-1}<math>.)

PolarisationCorresponding Jones vector
Linear polarized in the x-direction

<math>\begin{pmatrix} 1 \\ 0 \end{pmatrix}<math>

Linear polarized in the y-direction

<math>\begin{pmatrix} 0 \\ 1 \end{pmatrix}<math>

Linear polarized at 45 degrees from the x-axis

<math>\frac{1}{\sqrt2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}<math>

Left circular polarized

<math>\frac{1}{\sqrt2} \begin{pmatrix} 1 \\ i \end{pmatrix}<math>

Right circular polarized

<math>\frac{1}{\sqrt2} \begin{pmatrix} 1 \\ -i \end{pmatrix}<math>


The following table gives examples of Jones matrices.

Optical elementCorresponding Jones matrix
Linear polarizer with axis of transmission horizontal

<math>\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}<math>

Linear polarizer with axis of transmission vertical

<math>\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}<math>

Linear polarizer with axis of transmission at 45 degrees

<math>\frac12 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}<math>

Linear polarizer with axis of transmission at -45 degrees

<math>\frac12 \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}<math>

Linear polarizer with axis of transmission at <math>\varphi<math> radian

<math>\begin{pmatrix} \cos^2\varphi & \cos\varphi\sin\varphi \\ \sin\varphi\cos\varphi & \sin^2\varphi \end{pmatrix}<math>

Left circular polarizer

<math>\frac12 \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}<math>

Right circular polarizer

<math>\frac12 \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}<math>

Half-wave plate with fast axis pointing along x-direction

<math>\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}<math>

Quarter-wave plate with fast axis pointing along x-direction

<math>\begin{pmatrix} \frac12 - \frac i2 & 0 \\ 0 & \frac12 + \frac i2 \end{pmatrix}<math>

See also

External links

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools