Internet shorthand notation
|
Internet shorthand notation is a notation widely used on Internet sites, where typing complicated mathematical symbols is rather cumbersome.
Contents |
Exponentials
Long-hand:
- <math>e^{f\left(x,y,\dots\right)}<math>
Short-hand:
- exp(f(x,y,...))
Most commonly:
- e^f(x,y,...)
Limits
Long-hand:
- <math>\lim_{r \to c} \left(f \left(r, x, \dots \right)\right)<math>
Short-hand:
- lim(f(r,x,...),r,c)
where c can be a finite quantity, or ∞. The limit from the left is called llim, and the limit from the right rlim.
Most commonly:
- lim_r->c f(r,x,...)
Sums
Long-hand:
- <math>\sum_{r=a}^b f\left(x,r,\dots\right)<math>
- <math>\sum_{r=a \to b} f\left(x,r,\dots\right)<math>
Short-hand:
- sum(f(x,r,...),r,a,b)
Taylor/Maclaurin series
Long-hand:
- The Taylor series of degree k for f(x,y,...) with respect to x about a.
Short-hand:
- tayl(f(x,y,...),x,k,a)
Long-hand:
- The Maclaurin series of degree k for f(x,y,...) with respect to x.
Short-hand:
- macl(f(x,y,...),x,k)
Integrals
Long-hand:
- <math>\int_a^b f\left(x\right) dx<math>
Short-hand:
- int(f(x),x,a,b)
Derivatives
Long-hand:
- <math>\frac{d\left(f\left(x\right)\right)}{dx}<math>
Short-hand:
- d/dx(f(x))