Hyperperfect number
|
In mathematics, a k-hyperperfect number (sometimes just called hyperperfect number) is a natural number n for which the equality n = 1 + k(σ(n) − n − 1) holds, where σ(n) is the divisor function (i.e., the sum of all positive divisors of n). A number is perfect iff it is 1-hyperperfect.
The first few numbers in the sequence of k-hyperperfect numbers are 6, 21, 28, 301, 325, 496, ... (sequence A034897 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A034897) in OEIS), with the corresponding values of k being 1, 2, 1, 6, 3, 1, 12, ... (sequence A034898 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A034898) in OEIS). The first few k-hyperperfect numbers that are not perfect are 21, 301, 325, 697, 1333, ... (sequence A007592 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A007592) in OEIS).
The following table lists the first few k-hyperperfect numbers for some values of k, together with the sequence number in OEIS of the sequence of k-hyperperfect numbers:
k | OEIS | Some known k-hyperperfect numbers |
---|---|---|
1 | A000396 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A000396) | 6, 28, 496, 8128, 33550336, ... |
2 | A007593 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A007593) | 21, 2133, 19521, 176661, 129127041, ... |
3 | 325, ... | |
4 | 1950625, 1220640625, ... | |
6 | A028499 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A028499) | 301, 16513, 60110701, 1977225901, ... |
10 | 159841, ... | |
11 | 10693, ... | |
12 | A028500 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A028500) | 697, 2041, 1570153, 62722153, 10604156641, 13544168521, ... |
18 | A028501 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A028501) | 1333, 1909, 2469601, 893748277, ... |
19 | 51301, ... | |
30 | 3901, 28600321, ... | |
31 | 214273, ... | |
35 | 306181, ... | |
40 | 115788961, ... | |
48 | 26977, 9560844577, ... | |
59 | 1433701, ... | |
60 | 24601, ... | |
66 | 296341, ... | |
75 | 2924101, ... | |
78 | 486877, ... | |
91 | 5199013, ... | |
100 | 10509080401, ... | |
108 | 275833, ... | |
126 | 12161963773, ... | |
132 | 96361, 130153, 495529, ... | |
136 | 156276648817, ... | |
138 | 46727970517, 51886178401, ... | |
140 | 1118457481, ... | |
168 | 250321, ... | |
174 | 7744461466717, ... | |
180 | 12211188308281, ... | |
190 | 1167773821, ... | |
192 | 163201, 137008036993, ... | |
198 | 1564317613, ... | |
206 | 626946794653, 54114833564509, ... | |
222 | 348231627849277, ... | |
228 | 391854937, 102744892633, 3710434289467, ... | |
252 | 389593, 1218260233, ... | |
276 | 72315968283289, ... | |
282 | 8898807853477, ... | |
296 | 444574821937, ... | |
342 | 542413, 26199602893, ... | |
348 | 66239465233897, ... | |
350 | 140460782701, ... | |
360 | 23911458481, ... | |
366 | 808861, ... | |
372 | 2469439417, ... | |
396 | 8432772615433, ... | |
402 | 8942902453, 813535908179653, ... | |
408 | 1238906223697, ... | |
414 | 8062678298557, ... | |
430 | 124528653669661, ... | |
438 | 6287557453, ... | |
480 | 1324790832961, ... | |
522 | 723378252872773, 106049331638192773, ... | |
546 | 211125067071829, ... | |
570 | 1345711391461, 5810517340434661, ... | |
660 | 13786783637881, ... | |
672 | 142718568339485377, ... | |
684 | 154643791177, ... | |
774 | 8695993590900027, ... | |
810 | 5646270598021, ... | |
814 | 31571188513, ... | |
816 | 31571188513, ... | |
820 | 1119337766869561, ... | |
968 | 52335185632753, ... | |
972 | 289085338292617, ... | |
978 | 60246544949557, ... | |
1050 | 64169172901, ... | |
1410 | 80293806421, ... | |
2772 | A028502 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A028502) | 95295817, 124035913, ... |
3918 | 61442077, 217033693, 12059549149, 60174845917, ... | |
9222 | 404458477, 3426618541, 8983131757, 13027827181, ... | |
9828 | 432373033, 2797540201, 3777981481, 13197765673, ... | |
14280 | 848374801, 2324355601, 4390957201, 16498569361, ... | |
23730 | 2288948341, 3102982261, 6861054901, 30897836341, ... | |
31752 | A034916 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A034916) | 4660241041, 7220722321, 12994506001, 52929885457, 60771359377, ... |
55848 | 15166641361, 44783952721, 67623550801, ... | |
67782 | 18407557741, 18444431149, 34939858669, ... | |
92568 | 50611924273, 64781493169, 84213367729, ... | |
100932 | 50969246953, 53192980777, 82145123113, ... |
It can be shown that if k > 1 is an odd integer and p = (3k + 1) / 2 and q = 3k + 4 are prime numbers, then p²q is k-hyperperfect; Judson S. McCraine has conjectured in 2000 that all k-hyperperfect numbers for odd k > 1 are of this form, but the hypothesis has not been proven so far. Furthermore, it can be proven that if p ≠ q are odd primes and k is an integer such that k(p + q) = pq - 1, then pq is k-hyperperfect.
It is also possible to show that if k > 0 and p = k + 1 is prime, then for all i > 1 such that q = pi − p + 1 is prime, n = pi − 1q is k-hyperperfect. The following table lists known values of k and corresponding values of i for which n is k-hyperperfect:
k | OEIS | Values of i |
---|---|---|
16 | A034922 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=034922) | 11, 21, 127, 149, 469, ... |
22 | 17, 61, 445, ... | |
28 | 33, 89, 101, ... | |
36 | 67, 95, 341, ... | |
42 | A034923 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=034923) | 4, 6, 42, 64, 65, ... |
46 | A034924 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=034924) | 5, 11, 13, 53, 115, ... |
52 | 21, 173, ... | |
58 | 11, 117, ... | |
72 | 21, 49, ... | |
88 | A034925 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=034925) | 9, 41, 51, 109, 483, ... |
96 | 6, 11, 34, ... | |
100 | A034926 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=034926) | 3, 7, 9, 19, 29, 99, 145, ... |
Contents |
See also
External links
- MathWorld: Hyperperfect number (http://mathworld.wolfram.com/HyperperfectNumber.html)
Further reading
Articles
- Daniel Minoli, Robert Bear, Hyperperfect Numbers, PME (Pi Mu Epsilon) Journal, University Oklahoma, Fall 1975, pp. 153-157.
- Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem; Vol. 4, No. 2, Dec 1978, pp. 277-302.
- Daniel Minoli, Structural Issues For Hyperperfect Numbers, Fibonacci Quarterly, Feb. 1981, Vol. 19, No. 1, pp. 6-14.
- Daniel Minoli, Issues In Non-Linear Hyperperfect Numbers, Mathematics of Computation, Vol. 34, No. 150, April 1980, pp. 639-645.
- Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
- Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
- Judson S. McCranie, A Study of Hyperperfect Numbers, Journal of Integer Sequences, Vol. 3 (2000), http://www.math.uwaterloo.ca/JIS/VOL3/mccranie.html
Books
- Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0071406158 (p.114-134)fr:Nombre hyperparfait