Hyper generalized orthogonal Lie algebra

<math>\begin{pmatrix} \mathbf{A} & V \\ -V^t & 0 \end{pmatrix}<math> belongs to <math>\mathfrak{so}<math>(n+1) if A belongs to <math>\mathfrak{so}<math>(n) and V is a (column) n-vector. Skew-symmetric matrix.
<math>\begin{pmatrix}A & V \\ V^t & 0 \end{pmatrix}<math>

belongs to <math>\mathfrak{so}<math>(n,m+1) if A belongs to <math>\mathfrak{so}<math>(n,m) and V is a (n+m)-vector (including m = 0, of course). Lobachevskian algebra is <math>\mathfrak{so}<math> (n, 1) (not Lorentzian as is usual in the literature, a confusion with his role in Poincare, but neutral is hyperbolic).

New Notation!:<math>\begin{pmatrix}A & V \\ 0 & 0 \end{pmatrix}<math> belongs to <math>\mathfrak{so}<math>(n,m,1) if A belongs to <math>\mathfrak{so}<math>(n,m) and V is a (n+m)-vector. Euclidean algebra is <math>\mathfrak{so}<math>(n,0,1)!. Poincarean algebra is <math>\mathfrak{so}<math>(n,1,1). In general it represents the Lie algebra of the semidirect product of traslations in the space Rn+m with the SO(n, m) which has <math>\mathfrak{so}<math>(n,m) as its Lie algebra.

New Notation:<math>\begin{pmatrix}A & V \\ 0 & 0 \end{pmatrix}<math> belongs to <math>\mathfrak{so}<math>(n,m,l+1) if A belongs to <math>\mathfrak{so}<math>(n,m,l) and V is a (n+m+l)-vector.

In particular:<math>\begin{pmatrix}A & V & X\\ 0 & 0 & t \\0 & 0 & 0\end{pmatrix}<math> belongs to <math>\mathfrak{so}<math>(n,m,2) if A belongs to <math>\mathfrak{so}<math>(n,m) and V and X are (n+m)-vectors. <math>\mathfrak{g}<math>=Galilean algebra is <math>\mathfrak{so}<math>(n,0,2), associated with an iterated semidirect product. (t is a "number", but an important one <math>\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]<math> gives t if n>2. So time is the very conmmutative part of Galilean group).

For completeness we copy here the structure equations dropping nonsense imaginary (in some pages even planckian!) factors. The Lie algebra <math>\mathfrak{g}<math> is spanned by T, Xi, Vi and Aij (antisymmetric tensor) subject to


  • [Xi, T] = 0
  • [Xi, Xj] = 0
  • [Aij, T] = 0
  • [Vi, Vj] = 0
  • [Aij, Akl] = δik Ajl - δil Ajk - δjk Ail + δjl Aik
  • [Aij, Xk] = δik Xj - δjk Xi
  • [Aij, Vk] = δik Vj - δjk Vi
  • [Vi, Xj] = 0
  • [Vi,T]=Xi Oh, is true! velocity is proportion between space and time!


External links

es:Álgebra de Lie Ortogonal Generalizada

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools