Grunwald-Letnikov differintegral

In mathematics, the combined differentiation/integration operator used in fractional calculus is called the differintegral, and it has a few different forms which are all equivalent, provided that they are initialized (used) properly.

It is noted:

<math>{}_a \mathbb{D}^q_t<math>

and is most generally defined as:

<math>{}_a\mathbb{D}^q_t= \left\{\begin{matrix} \frac{d^q}{dx^q}, & \mathbb{R}(q)>0 \\ 1, & \mathbb{R}(q)=0 \\ \int^t_a(dx)^{-q}, & \mathbb{R}(q)<0. \end{matrix}\right.<math>

The Grunwald-Letnikov differintegral is a commonly used form of the differintegral. It is defined using the definition of the derivative:

<math>f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}.<math>

Constructing the Grunwald-Letnikov differintegral

The formula for the derivative can be applied recursively to get higher-order derivatives. For example, the second-order derivative would be:

<math>f''(x) = \lim_{h \to 0} \frac{f'(x+h)-f'(x)}{h}<math>
<math> = \lim_{h_1 \to 0} \frac{\lim_{h_2 \to 0} \frac{f(x+h_1+h_2)-f(x+h_1)}{h_2}-\lim_{h_2 \to 0} \frac{f(x+h_2)-f(x)}{h_2}}{h_1}<math>

Assuming that the h 's converge symmetrically, this simplifies to:

<math> = \lim_{h \to 0} \frac{f(x+2h)-2f(x+h)+f(x)}{h^2}<math>

In general, we have (see binomial coefficient):

<math>d^n f(x) = \lim_{h \to 0} \frac{\sum_{0 \le m \le n}(-1)^m {n \choose m}f(x+mh)}{h^n}<math>

If we remove the restriction that n must be a positive integer, we have:

<math>\mathbb{D}^q f(x) = \lim_{h \to 0} \frac{1}{h^q}\sum_{0 \le m < \infty}(-1)^m {q \choose m}f(x+mh)<math>

This is the Grunwald-Letnikov differintegral.

A simpler expression

We may also write the expression more simply if we make the substitution:

<math>\Delta^q_h f(x) = \sum_{0 \le m < \infty}(-1)^m {q \choose m}f(x+mh)<math>

This results in the expression:

<math>\mathbb{D}^q f(x) = \lim_{h \to 0}\frac{\Delta^q_h f(x)}{h^q}.<math>
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools