Gorenstein ring
|
In commutative algebra, a Gorenstein local ring is a Noetherian commutative local ring R with finite injective dimension, as an R-module. There are many equivalent conditions, some of them listed below, most dealing with some sort of duality condition.
A Gorenstein commutative ring is a commutative ring such that each localization at a prime ideal is a Gorenstein local ring. The Gorenstein ring concept is a special case of the more general Cohen-Macaulay ring.
Examples
- Every complete intersection ring is Gorenstein.
- Every regular local ring is a complete intersection ring, so is Gorenstein.