Givens rotation

In mathematics, a Givens rotation is a matrix of the form

<math>G(i, k, \theta) =
      \begin{bmatrix}   1   & \cdots &    0   & \cdots &    0   & \cdots &    0   \\
                     \vdots & \ddots & \vdots &        & \vdots &        & \vdots \\
                        0   & \cdots &    c   & \cdots &    s   & \cdots &    0   \\
                     \vdots &        & \vdots & \ddots & \vdots &        & \vdots \\
                        0   & \cdots &   -s   & \cdots &    c   & \cdots &    0   \\
                     \vdots &        & \vdots &        & \vdots & \ddots & \vdots \\
                        0   & \cdots &    0   & \cdots &    0   & \cdots &    1
      \end{bmatrix}<math>

where c = cos(θ) and s = sin(θ) appear in the i-th / k-th row and column, respectively. More formally,

<math>G(i, k, \theta)_{j, l} = \begin{cases} \cos\theta & \mbox{ if } j = i, l = i \mbox{ or } j = k, l = k \\
                                                     \sin\theta & \mbox{ if } j = i, l = k \\
                                                    -\sin\theta & \mbox{ if } j = k, l = i \\
                                                     1          & \mbox{ if } j = l \\
                                                     0          & \mbox{ otherwise }
      \end{cases}.<math>

The product <math>G(i, k, \theta)^Tx<math> represents a counter-clockwise rotation of the vector x in the (i,k) plane about θ radians, hence the name Givens rotation.

The main use of Givens rotations in numerical linear algebra is to introduce zeros in vectors/matrices. This effect can e.g. be employed for computing the QR decomposition of a matrix; their advantage over Householder transformations is that they can easily be parallelised.

References

  • Gene H. Golub and Charles F. van Loan, Matrix Computations, 2nd edn., The Johns Hopkins University Press, 1989.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools