Generalized game
|
In computational complexity theory, a generalized game is a game that has been generalized so that it can be played on a board of any size. For example, generalized chess is the game of chess played on an n-by-n board, with 2n pieces on each side.
Complexity theory studies the asymptotic difficulty of problems, so generalizations of games are needed, as games on a fixed size of board are finite problems.
For many generalized games which last for a number of moves polynomial in the size of the board, the problem of determining if there is a win for the first player in a given position is PSPACE-complete. Generalized hex and reversi are PSPACE-complete.
For many generalized games which may last for a number of moves exponential in the size of the board, the problem of determining if there is a win for the first player in a given position is EXPTIME-complete. Generalized chess, go and checkers are EXPTIME-complete.
External links
- David Eppstein's page on Computational Complexity of Games and Puzzles (http://www.ics.uci.edu/~eppstein/cgt/hard.html)