Generalized continued fraction

In mathematics, a generalized continued fraction is a generalization of the concept of continued fraction in which the numerators are allowed to differ from unity. They are useful in the theory of infinite summation of series.

A generalized continued fraction is an expression such as:

<math>x = \frac{b_1}{a_1\pm\frac{b_2}{a_2\pm\frac{b_3}{a_3+\,\cdots}}} <math>

where all symbols are integers. A convenient notation is

<math>

\frac{b_1}{a_1\pm}\, \frac{b_2}{a_2\pm}\, \frac{b_3}{a_3\pm}\ldots <math>

The successive convergents are formed in a similar way to those of continued fractions. If all <math>\pm<math> signs are positive,

<math>

x_1=\frac{b_1}{a_1}\qquad x_2=\frac{a_2b_1}{a_2a_1+b_2}\qquad x_3=\frac{a_3a_2b_1+b_3b_1}{a_3(a_2a_1+b_2)+b_2a_1} <math>

If we write <math>x_n=p_n/q_n<math>, then

<math>

p_{n+1}=a_{n+1}p_n+b_{n+1}p_{n-1},\qquad q_{n+1}=a_{n+1}q_n+b_{n+1}q_{n-1}<math> (if the signs are negative, replace "+" with "-" in the above formula).

If the positive sign is chosen, then (as for ordinary continued fractions) all convergents of odd order are greater than <math>x<math> but uniformly decrease; and all convergents of even order are less than <math>x<math> but uniformly increase.

Thus odd convergents tend to a limit, and even convergents tend to a limit. If the limits are not equal, the continued fraction is said to be oscillating. To determine whether the limits are equal, define

<math>

s_n= \frac{a_na_{n+1}}{b_{n+1}}. <math> Then if <math>\exists\epsilon>0<math> and integer <math>n_0<math> such that <math>n>n_0<math> implies <math>s_n>\epsilon<math>, then the limits are equal and the continued fraction has a definite value.

Contents

1 Higher dimensions
2 References

Generalized continued fractions and series

The series

<math>

\frac{1}{u_1}+ \frac{1}{u_2}+ \frac{1}{u_3}+ \cdots+ \frac{1}{u_n} <math> is equal to the continued fraction

<math>

\frac{1}{u_1-}\, \frac{u_1^2}{u_1+u_2-}\, \frac{u_2^2}{u_2+u_3-}\cdots \frac{u_{n-1}^2}{u_{n-1}+u_n}.<math>

The series

<math>

\frac{1}{a_0}+\frac{x}{a_0a_1}+\frac{x^2}{a_0a_1a_2}+ \cdots +\frac{x^n}{a_0a_1a_2\ldots a_n} <math> is equal to

<math>

\frac{1}{a_0-}\, \frac{a_0x}{a_1+x-}\, \frac{a_1x}{a_2+x-}\, \cdots \frac{a_{n-1}x}{a_n-x} <math>

Examples

<math>

\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots= \frac{x}{1+}\, \frac{1^2x}{2-x+}\, \frac{2^2x}{3-2x+}\, \frac{3^2x}{4-3x+}\ldots <math>

<math>

\exp(x)=1+x+\frac{x^2}{2!}+\ldots= 1+\frac{x}{1-}\, \frac{x}{x+2-}\, \frac{2x}{x+3-}\, \frac{3x}{x+4-}\, \ldots <math>

<math>

\exp(x)=\frac{1}{1-}\, \frac{z}{1+}\, \frac{z}{2-}\, \frac{z}{3+}\, \frac{z}{2-}\, \frac{z}{5+}\, \frac{z}{2-}\ldots\qquad\forall z\in C <math>

Higher dimensions

Another meaning for generalized continued fraction would be a generalisation to higher dimensions. For example, there is a close relationship between the continued fraction for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Therefore one can ask for something relating to lattice points in three or more dimensions. One reason to study this area is to quantify the mathematical coincidence idea; for example, for monomials in several real numbers, take the logarithmic form and consider how small it can be.

There have been numerous attempts, in fact, to construct a generalised theory. Two notable ones are those of Georges Poitou and George Szekeres.

References

  • William B. Jones and W.J. Thron, "Continued Fractions Analytic Theory and Applications", Addison-Wesley, 1980. (Covers both analytic theory and history).
  • Lisa Lorentzen and Haakon Waadeland, "Continued Fractions with Applications", North Holland, 1992. (Covers primarily analytic theory and some arithmetic theory).
  • Oskar Perron, B.G. Teubner, "Die Lehre Von Den Kettenbruchen" Band I, II, 1954.
  • George Szekeres, "Multidimensional Continued Fractions." G.Ann. Univ. Sci. Budapest Eotvos Sect. Math. 13, 113-140, 1970.
  • H.S. Wall, "Analytic Theory of Continued Fractions", Chelsea, 1973.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools