Fixed point combinator

A fixed point combinator is a function which computes fixed points of other functions. A 'fixed point' of a function is a value left 'fixed' by that function; for example, 0 and 1 are fixed points of the squaring function. Formally, a value x is a fixed point of a function f if f(x) = x.

In certain formalizations of mathematics, such as the lambda calculus and combinatorial calculus, every function has a fixed point. In these formalizations, it is possible to produce a function, often denoted Y, which computes a fixed point of any function it is given. Y is a function with the property that f(Y(f)) = Y(f) for all functions f.

From a more practical point of view, fixed point combinators allow the definition of anonymous recursive functions. Somewhat surprisingly, they can be defined with non-recursive lambda abstractions.

One well-known fixed point combinator, discovered by Haskell B. Curry, is

Y = λf.(λx.(f (x x)) λx.(f (x x)))

and can be expressed in the SKI-calculus as

Y = S (K (S I I)) (S (S (K S) K) (K (S I I)))

The simplest fixed point combinator in the SK-calculus, found by John Tromp, is

Y = S S K (S (K (S S (S (S S K)))) K

Another common fixed point combinator is the Turing fixed-point combinator (named for its discoverer Alan Turing):

Θ = (λx.λy.(y (x x y)) λx.λy.(y (x x y)))

This combinator is of interest because a variation of it can be used with applicative-order reduction:

Θv = λh.(λx.(h λy.(y (x x y))) λx.(h λy.(y (x x y))))

Fixed point combinators are not especially rare. Here is one constructed by Jan Willem Klop:

Yk = (L L L L L L L L L L L L L L L L L L L L L L L L L L L L)

where:

L = λabcdefghijklmnopqstuvwxyzr.(r (t h i s i s a f i x e d p o i n t c o m b i n a t o r))

Example

Consider the factorial function. A single step in the recursion of the factorial function is

H = (λf.λn.(ISZERO n) 1 (MULT n (f (PRED n))))

which is non-recursive. If the factorial function is like a chain (of factors), then the h function above joins two links. Then the factorial function is simply

FACT = (Y H)
FACT = (((λ h . (λ x . h (x x)) (λ x . h (x x))) (λf.λn.(ISZERO n) 1 (MULT n (f (PRED n)))))

The fixed point combinator causes the H combinator to repeat itself indefinitely until it trips itself up with (ISZERO 0) = TRUE.

By the way, these equations are meta-equations; functions in lambda calculus are all anonymous. The function labels Y, H, FACT, PRED, MULT, ISZERO, 1, 0 (defined in the article for lambda calculus) are meta-labels, to which correspond meta-definitions and meta-equations, and with which a user can perform algebraic meta-substitutions. That is how mathematicians can prove properties of the lambda calculus. The equals sign as an assignment operation is not part of the lambda calculus.

See also

External link

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools