# Finsler manifold

In mathematics, a Finsler manifold is a differential manifold M with a Banach norm defined over each tangent space such that the Banach norm as a function of position is smooth and satisfies the following property:

For each point x of M, and for every vector v in the tangent space TxM, the second derivative of the function L:TxM->R given by
[itex]L(\bold{w})=\frac{1}{2}\|w\|^2[itex]
at v is positive definite.

Riemannian manifolds (but not pseudo Riemannian manifolds) are special cases of Finsler manifolds.

The length of γ, a differentiable curve in M is given by

[itex]\int \left\|\frac{d\gamma}{dt}(t)\right\| dt[itex].

Note that this is reparametrization-invariant. Geodesics are curves in M whose length is extremal under functional derivatives.

• Art and Cultures
• Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
• Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
• Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
• United States (http://www.academickids.com/encyclopedia/index.php/United_States)
• World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
• Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
• Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
• Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
• Space and Astronomy
• Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)