Finitely generated abelian group

In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x1,...,xs in G such that every x in G can be written in the form

x = n1x1 + n2x2 + ... + nsxs

with integers n1,...,ns. In this case, we say that the set {x1,...,xs} is a generating set of G or that x1,...,xs generate G.

Clearly, every finite abelian group is finitely generated. The finitely generated abelian groups are of a rather simple structure and can be completely classified, as will be explained below.


  • the integers (Z,+) are a finitely generated abelian group
  • the integers modulo n Zn are a finitely generated abelian group
  • any direct sum of finitely many finitely generated abelian groups is again finitely generated abelian

There are no other examples. The group (Q,+) of rational numbers is not finitely generated: if x1,...,xs are rational numbers, pick a natural number w coprime to all the denominators; then 1/w cannot be generated by x1,...,xs.


The fundamental theorem of finitely generated abelian groups states that every finitely generated abelian group G is isomorphic to a direct sum of primary and infinite cyclic groups. A primary cyclic group is one whose order is a power of a prime. That is, every such group is isomorphic to one of the form

<math>\mathbb{Z}^n \oplus \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_t}<math>

where n ≥ 0, and the numbers m1,...,mt are (not necessarily distinct) powers of prime numbers. The values of n, m1,...,mt are (up to order) uniquely determined by G; in particular, G is finite if and only if n = 0

Because of the general fact that Zm is isomorphic to the direct product of Zj and Zk if and only if j and k are coprime and m = jk, we can also write any abelian group G as a direct product of the form

<math>\mathbb{Z}^n \oplus \mathbb{Z}_{k_1} \oplus \cdots \oplus \mathbb{Z}_{k_u}<math>

where k1 divides k2, which divides k3 and so on up to ku. Again, the numbers n and k1,...,ku are uniquely determined by G.

Stated differently the fundamental theorem says that a finitely-generated abelian group is the direct sum of a free abelian group of finite rank and a finite abelian group, each of those being unique up to isomorphism. The finite abelian group is just the torsion subgroup of G. The rank of G is defined as the rank of the torsion-free part of G; this is just the number n in the above formulas.

Note that not every abelian group of finite rank is finitely generated; the rank-1 group Q is one example, and the rank-0 group given by a direct sum of countably many copies of Z2 is another one.

A corollary to the fundamental theorem is that every finitely generated torsion-free abelian group is free abelian. The finitely generated condition is essential here: Q is torsion-free but not free abelian.

Every subgroup and factor group of a finitely generated abelian group is again finitely generated abelian. The finitely generated abelian groups, together with the group homomorphisms, form an abelian erzeugte abelsche Gruppe


  • Art and Cultures
    • Art (
    • Architecture (
    • Cultures (
    • Music (
    • Musical Instruments (
  • Biographies (
  • Clipart (
  • Geography (
    • Countries of the World (
    • Maps (
    • Flags (
    • Continents (
  • History (
    • Ancient Civilizations (
    • Industrial Revolution (
    • Middle Ages (
    • Prehistory (
    • Renaissance (
    • Timelines (
    • United States (
    • Wars (
    • World History (
  • Human Body (
  • Mathematics (
  • Reference (
  • Science (
    • Animals (
    • Aviation (
    • Dinosaurs (
    • Earth (
    • Inventions (
    • Physical Science (
    • Plants (
    • Scientists (
  • Social Studies (
    • Anthropology (
    • Economics (
    • Government (
    • Religion (
    • Holidays (
  • Space and Astronomy
    • Solar System (
    • Planets (
  • Sports (
  • Timelines (
  • Weather (
  • US States (


  • Home Page (
  • Contact Us (

  • Clip Art (
Personal tools