Fibonacci number program
|
In many beginning computer science courses, an introduction to the concept of recursion often includes a program to calculate and print Fibonacci numbers (or computing the factorial of a number). In general, however, a recursive algorithm to compute Fibonacci numbers is extremely inefficient when compared to other algorithms, such as iterative or matrix equation algorithms.
Contents |
Common Lisp
Calculating fibonacci through Lucas' formula
(defun fib (n) (cond ((= n 0) 0) ((or (= n 1) (= n 2)) 1) ((= 0 (mod n 2)) (- (expt (fib (+ (truncate n 2) 1)) 2) (expt (fib (- (truncate n 2) 1)) 2))) (t (+ (expt (fib (truncate n 2)) 2) (expt (fib (+ (truncate n 2) 1)) 2))))) (fib (parse-integer (second *posix-argv*))) ;
Haskell examples
Lazy infinite list
module Main where import System.Environment fibo = 1 : 1 : zipWith (+) fibo (tail fibo) main = do args <- getArgs print (fibo !! (read(args!!0)-1))
Perl examples
One example
#! /usr/bin/perl use bigint; my ($a, $b) = (0, 1); for (;;) { print "$a\n"; ($a, $b) = ($b, $a+$b); }
Binary recursion, snippet
sub fibo; sub fibo {$_ [0] < 2 ? $_ [0] : fibo ($_ [0] - 1) + fibo ($_ [0] - 2)}
Runs in Θ(F(n)) time, which is Ω(1.6n).
Binary recursion with special Perl "caching", snippet
use Memoize; memoize 'fibo'; sub fibo; sub fibo {$_ [0] < 2 ? $_ [0] : fibo ($_ [0] - 1) + fibo ($_ [0] - 2)}
Iterative, snippet
sub fibo { my ($n, $a, $b) = (shift, 0, 1); ($a, $b) = ($b, $a + $b) while $n -- > 0; $a }
Command line iterative
perl -Mbigint -le '$a=1; print $a += $b while print $b += $a'
PostScript example
Iterative
20 % how many Fibonacci numbers to print 1 dup 3 -1 roll { dup 3 -1 roll dup 4 1 roll add 3 -1 roll = } repeat
Stack recursion
This example uses recursion on the stack.
% the procedure /fib { dup dup 1 eq exch 0 eq or not { dup 1 sub fib exch 2 sub fib add } if } def % prints the first twenty fib numbers /ntimes 20 def /i 0 def ntimes { i fib = /i i 1 add def } repeat
Python examples
Recursion
def fib(n): if n < 2: return n else: return fib(n - 1) + fib(n - 2)
Generator
def fib(): a, b = 0, 1 while True: yield a a, b = b, a + b
Matrix equation
def mul(A, B): a, b, c = A d, e, f = B return a*d + b*e, a*e + b*f, b*e + c*f def pow(A, n): if n == 1: return A if n & 1 == 0: return pow(mul(A, A), n/2) else: return mul(A, pow(mul(A, A), (n-1)/2)) def fib(n): if n < 2: return n return pow((1,1,0), n-1)[0]
This calculates the nth Fibonacci number in O(log N) time, from the matrix equation
- <math>\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n =
\begin{bmatrix} F\left(n+1\right) & F \left(n\right) \\ F\left(n\right) & F \left(n-1\right) \end{bmatrix}
<math> and by using exponentiating by squaring.
Scheme examples
Binary recursion, snippet
(define fibo (lambda (x) (if (< x 2) x (+ (fibo (- x 1)) (fibo (- x 2))))))
Runs in Θ(F(n)) time, which is Ω(1.6n).
Tail-end recursive, snippet
(define (fibo x) (define (fibo-iter x a b) (if (= x 0) a (fibo-iter (- x 1) b (+ a b)))) (fibo-iter x 0 1))
Runs in Θ(n) time.
Display all, snippet
(define (fibo-run a b) (display a) (newline) (fibo-run b (+ a b))) (define fibo-run-all (fibo-run 0 1)))
C/C++/Java example
Recursive snippet
int fib(int n) { if (n < 2) return n; else return fib(n-1) + fib(n-2); }
Runs in Θ(F(n)) time, which is Ω(1.6n).
Ruby examples
def fib(num) i, j = 0, 1 while i <= num yield i i, j = j, i + j end end fib(10) {|i| puts i}
See also
- Fibonacci number
- Golden ratio
- Hello world program (Unrelated to the Fibonacci numbers, but contains many programming examples.)
External links
- Fibonacci series implementations and benchmark (http://www.inorg.chem.msu.ru/~cubbi/serious/fibonacci.html)