Europa (moon)
|
Missing image
Europa-moon.jpg True color image taken by the Galileo probe
| |||||||
Discovery | |||||||
---|---|---|---|---|---|---|---|
Discovered by | G. Galilei S. Marius | ||||||
Discovered on | January 7, 1610 | ||||||
Orbital characteristics | |||||||
Mean radius | 671,034 km (0.004486 AU) | ||||||
Eccentricity | 0.0094 | ||||||
Periastron | 664,700 km (0.00444 AU) | ||||||
Apastron | 677,300 km (0.00453 AU) | ||||||
Revolution period | 3.551181041 d (0.0097226 a) | ||||||
Orbital circumference | 4,216,100 km (0.028 AU) | ||||||
Orbital velocity | max: 13.871 km/s mean: 13.741 km/s min: 13.613 km/s | ||||||
Inclination | 25.04° (to the ecliptic) 0.47° (to Jupiter's equator) | ||||||
Is a satellite of | Jupiter | ||||||
Physical characteristics | |||||||
Mean diameter | 3,121.6 km (0.245 Earths) | ||||||
Surface area | 3.1 * 107 km2 (0.060 Earths) | ||||||
Volume | 1.6 * 1010 km3 (0.015 Earths) | ||||||
Mass | 4.8*1022 kg (0.008 Earths) | ||||||
Mean density | 3.014 g/cm3 | ||||||
Surface gravity | 1.31 m/s2 (0.134 g) | ||||||
Escape velocity | 2.0 km/s | ||||||
Rotation period | synchronous | ||||||
Axial tilt | zero | ||||||
Albedo | 0.67 | ||||||
Surface temp. |
| ||||||
Atmospheric characteristics | |||||||
Atmospheric pressure | 1 µPa | ||||||
Oxygen | 100% |
Europa (ew-roe'-pa, /ju'ro:pa/ Template:Audio, Greek Ευρώπη) is a moon of the planet Jupiter, smallest of the four Galilean moons. It is named after Europa, one of Zeus's many love interests in Greek mythology, after whom the continent of Europe is also named.
Although the name "Europa" was suggested by Simon Marius soon after its discovery, this name and the names of the other Galilean satellites curiously fell into disfavor for a considerable time, and was not revived in common use until the mid-20th century. In much of the earlier astronomical literature, it is simply referred to by its Roman numeral designation (a system used by Galileo to snub Marius) as Jupiter II or as the "second satellite of Jupiter".
Contents |
Physical characteristics
Europa is somewhat similar in bulk composition to the terrestrial planets, being primarily composed of silicate rock. It has an outer layer of water thought to be around 100 km thick (some as frozen ice upper crust, some as liquid ocean underneath the ice), and recent magnetic field data from the Galileo orbiter shows that Europa generates a sympathetic magnetic field by interacting with Jupiter's, which suggests the presence of a large fluid layer which is likely a salty liquid-water ocean. Europa may also contain a small metallic iron core.
Surface
Europa's surface is extremely smooth; few features more than a few hundred meters high have been seen. The prominent markings crisscrossing Europa's surface seem to be only albedo features with very low vertical relief. There are very few craters on Europa, with only three craters larger than 5 km in diameter, and its albedo is one of the highest of all moons. This would seem to indicate a young and active surface; based on estimates of the frequency of cometary bombardment Europa probably endures, Europa's surface must be no more than 30 million years old. The smoothness and markings visible on Europa's surface strongly resemble that of sea ice on Earth, and it is thought that under Europa's surface there is a layer of liquid water kept warm by tidally generated heat. The temperature on the surface of Europa is 110 K at the equator and only 50 K at the poles, however, so water ice on the moon's surface is as hard as rock. The largest craters on Europa appear to be filled with flat, fresh ice; based on this and on the calculated amount of heat generated by Europa's tides it is predicted that the outer crust of solid ice is approximately 10-30 kilometers thick, which could mean that the liquid ocean may be as much as 90 kilometers deep underneath.
Europa's most striking surface feature is a series of dark streaks crisscrossing the entire globe. These streaks strongly resemble the cracks that form in sea ice on Earth, and close examination shows that the edges of Europa's crust on either side of the cracks have moved relative to each other. The larger bands are roughly 20 km across with diffuse outer edges, regular striations, and a central band of lighter material which is thought to have been produced by a series of volcanic water eruptions or geysers as the Europan crust spread open to expose warmer layers beneath. The effect is similar to that seen in the Earth's oceanic ridges. These various fractures are thought to have been caused in large part by the tidal stresses exerted by Jupiter; Europa's surface is thought to rise and fall up to 30 meters between high and low tides. Since Europa is tidally locked with Jupiter and therefore always maintains the same orientation towards the planet the stress patterns should form a distinctive and predictable pattern. However, only the youngest of Europa's fractures appear to conform to this predicted pattern; other fractures appear to have occurred at increasingly different orientations the older they are. This pattern can be explained if Europa's surface has rotated slightly faster than its interior, an effect which is possible due to the subsurface ocean mechanically decoupling the moon's surface from its rocky mantle and to the effects of Jupiter's gravity tugging on the moon's outer crust. Comparisons of Voyager and Galileo spacecraft photos suggest that Europa's crust rotates no faster than once every 10,000 years relative to its interior.
Europa_chaotic_terrain.jpg
Another type of feature present on Europa's surface are circular and elliptical lenticulae, Latin for "freckles". Many are domes, some are pits and some are smooth dark spots. Others have a jumbled or rough texture. The dome tops look like pieces of the older plains around them, suggesting that the domes formed when the plains were pushed up from below. It is thought that these lenticulae were formed by diapirs of warm ice rising up through the colder ice of the outer crust, much like magma chambers in the Earth's crust. The smooth dark spots could be formed by meltwater released when the warm ice breaks the surface, and the rough, jumbled lenticulae (called regions of "chaos", for example the Conamara Chaos) appear to be formed from many small fragments of crust embedded in smooth dark surface like icebergs in a frozen sea.
Atmosphere
Recent observations by the Hubble Space Telescope reveal that Europa has a very tenuous atmosphere (1 micropascal surface pressure) composed of oxygen. Of all the moons in the solar system only five others (Io, Callisto, Ganymede, Titan and Triton) are known to have atmospheres. Unlike the oxygen in Earth's atmosphere, Europa's is almost certainly not of biologic origin. It is most likely generated by sunlight and charged particles hitting Europa's icy surface producing water vapor which is subsequently split into hydrogen and oxygen. The hydrogen escapes Europa's gravity due to its low atomic mass, leaving the oxygen behind.
Subsurface ocean
The Galileo orbiter has found that Europa has a weak magnetic field (about 1/4 of the strength of Ganymede's and similar to Callisto's), and, most interestingly, it varies periodically as it passes through Jupiter's massive magnetic field. On March 2, 1998 NASA announced that Galileo had uncovered very strong evidence that there is a conducting material beneath Europa's surface, most likely a salty ocean. Spectrographic evidence suggests that the dark reddish streaks and features on Europa's surface appear to be rich in salts such as magnesium sulfate (Epsom salt), deposited by evaporating water that emerged from within. However, since the salts are generally colorless or white, some other material must also be present to account for the reddish color. Sulfur or iron compounds are suspected.
It has been suggested that life may exist in this under-ice ocean, perhaps subsisting in an environment similar to Earth's deep-ocean hydrothermal vents or the Antarctic Lake Vostok. There is currently no supporting evidence for this hypothesis, but efforts have nevertheless been made to avoid any possibility of contamination. The Galileo mission was concluded in September 2003 by crashing the spacecraft into Jupiter—if simply abandoned, the unsterilized craft might have made a future crash into Europa and contaminated it with terrestrial microorganisms. The introduction of such microorganisms could make it impossible to determine if Europa ever had its own native life and could even destroy such life if it exists.
Europa in popular culture
- Europa plays a very important role in the film and book of Arthur C. Clarke's 2010: Odyssey Two and its sequel. Super-advanced aliens take an interest in the primitive life forms living under Europa's ice and transform Jupiter into a sun to kick-start their evolution. In 2061: Odyssey Three, Europa has become a tropical ocean world.
- In Greg Bear's novel The Forge of God (1987), Europa is destroyed by aliens who use chunks of its ice to terraform planets.
- In the video game Infantry, large cities lie underneath the ice sheets of Europa.
- In the video game Battlezone, Europa is featured as a cold, ice covered world, where battles take place in cracks between the ice.
- The computer game Abyss: Incident at Europa involves an underwater base in Europa's ocean.
- The online script serial Banana Chan features Europa as a destination for Space Tourists in its 12th episode.
- In Europa Strike by Ian Douglas, a massive ancient alien spacecraft lies in an ocean beneath the moon's surface, the discovery of which leads to a battle between Chinese forces and US Marines in 2067.
- In the Futurama episode "Put Your Head on My Shoulder", Fry is maimed in a hover car accident on Europa while on a picnic with then-girlfriend Amy Wong and Dr. Zoidberg.
See also
- Darian calendar
- List of craters on Europa
- List of lineae on Europa
- List of geological features on Europa
- List of Jupiter's moons
External links
- Europa, a Continuing Story of Discovery at NASA/JPL (http://www.jpl.nasa.gov/galileo/europa/)
- The Calendars of Jupiter (http://www.martiana.org/mars/jupiter/jupifrm.htm)
Jupiter's natural satellites edit (https://academickids.com:443/encyclopedia/index.php?title=Template:Jupiter_Footer&action=edit) |
---|
Metis | Adrastea | Amalthea | Thebe | Io | Europa | Ganymede | Callisto | Themisto | Leda | Himalia | Lysithea | Elara | S/2000 J 11 | Carpo | S/2003 J 12 | Euporie | S/2003 J 3 | S/2003 J 18 | Thelxinoe | Euanthe | Helike | Orthosie | Iocaste | S/2003 J 16 | Ananke | Praxidike | Harpalyke | Hermippe | Thyone | Mneme | S/2003 J 17 | Aitne | Kale | Taygete | S/2003 J 19 | Chaldene | S/2003 J 15 | S/2003 J 10 | S/2003 J 23 | Erinome | Aoede | Kallichore | Kalyke | Eurydome | S/2003 J 14 | Pasithee | Cyllene | Eukelade | S/2003 J 4 | Hegemone | Arche | Carme | Isonoe | S/2003 J 9 | S/2003 J 5 | Pasiphaë | Sinope | Sponde | Autonoe | Callirrhoe | Megaclite | S/2003 J 2 |
Amalthea group | Galilean moons | Himalia group | Ananke group | Carme group | Pasiphaë group |
ca:Europa (satèl·lit) cs:Europa (měsíc) da:Europa (måne) de:Europa (Mond) eo:Eŭropo (luno) fr:Europe (lune) he:אירופה (ירח) ja:エウロパ (衛星) ko:에우로파 la:Europa (satelles) nl:Europa (maan) no:Europa (måne) pl:Europa (księżyc Jowisza) pt:Europa (satélite) ru:Европа (спутник Юпитера) fi:Europa sv:Europa (måne) zh:木卫二