Erdos-Ko-Rado theorem

Template:Titlelacksdiacritics

In combinatorial mathematics, the Erdős-Ko-Rado theorem of Paul Erdős, Chao Ko, and Richard Rado is the following. If <math>n\geq2r<math>, and <math>A<math> is a family of subsets of <math>\{1,2,...,n\}<math>, such that each subset is of size <math>r<math>, and each pair of subsets intersects, then the maximum number of sets that can be in <math>A<math> is given by the binomial coefficient

<math>{n-1} \choose {r-1}<math>.

The theorem was originally stated in 1961 in an apparently more general form. The subsets in question were only required to be size at most <math>r<math>, and with the additional requirement that no subset be contained in any other. This statement is not actually more general: any subset that has size less than <math>r<math> can be increased to size <math>r<math> to make the above statement apply.

Proof

The original proof of 1961 used induction on <math>n<math>. In 1972, Gyula Katona gave the following short and beautiful proof using double counting.

Suppose we have some such set <math>A<math>. Arrange the elements of <math>\{1,2,...,n\}<math> in any cyclic order, and inquire how many sets from <math>A<math> can form intervals within this cyclic order. For example if <math>n=8<math> and <math>r=3<math>, we could arrange the numbers <math>1,...,8<math> as

<math>[3,1,5,4,2,7,6,8]<math>

and intervals would be

<math>\{1,3,5\},\{1,4,5\},\{2,4,5\},\{2,4,7\},\{2,6,7\},\{6,7,8\},\{3,6,8\},\{1,3,8\}<math>.

(Key step) At most <math>r<math> of these intervals can be in <math>A<math>. If

<math>(a_1,a_2,...,a_r)<math>

is one of these intervals in <math>A<math> then for every <math>i<math>, there is at most one interval in <math>A<math> which separates <math>a_i<math> from <math>a_{i+1}<math>, i.e. contains precisely one of <math>a_i<math> and <math>a_{i+1}<math>. (If there were two, they would be disjoint, since <math>n\geq2r<math>.) Furthermore, if there are <math>r<math> intervals in <math>A<math>, then they must contain some element in common.

There are <math>(n-1)!<math> cyclic orders, and each set from <math>A<math> is an interval in precisely <math>r!(n-r)!<math> of them. Therefore the average number of intervals that <math>A<math> has in a random cyclic order must be

<math>\frac{|A|\cdot r!(n-r)!}{(n-1)!}\leq r.<math>

Rearranging the inequality, we get

<math>|A|\leq\frac{r(n-1)!}{r!(n-r)!}=\frac{(n-1)!}{(r-1)!(n-r)!}={n-1\choose r-1},<math>

establishing the theorem.

Further reading

  • P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets, Quarterly Journal of Mathematics, Oxford Series, series 2, volume 12 (1961), pages 313--320.
  • G. O. H. Katona. A simple proof of the Erdös-Chao Ko-Rado theorem. Journal of Combinatorial Theory, Series B, volume 13 (1972), pages 183--184.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools