Ehrhart polynomial

In mathematics, integral polytopes have associated Ehrhart polynomials which encode some geometrical information about them.

Specifically, consider a lattice L in Euclidean space Rn and an n-dimensional polytope P in Rn, and assume that all vertices of the polytope are points of the lattice. (A common example is L = Zn and a polytope with all its vertex coordinates being integers.) For any positive integer t, let tP be the t-fold dilation of P and let L(P, t) be the number of lattice points contained in tP. Ehrhart showed in 1967 that L is a rational polynomial of degree n in t, i.e. there exist rational numbers a0,...,an such that:

L(P, t) = antn + an-1tn-1 + ... + a0     for all positive integers t.

Furthermore, if P is closed (i.e. the boundary faces belong to P), some of the coefficients of L(P, t) have an easy interpretation:

  • the leading coefficient, an, is equal to the n-dimensional volume of P, divided by d(L) (see lattice for an explanation of the content d(L) of a lattice);
  • the second coefficient, an-1, can be computed as follows: the lattice L induces a lattice LF on any face F of P; take the (n-1)-dimensional volume of F, divide by 2d(LF), and add those numbers for all faces of P;
  • the constant coefficient a0 is the Euler characteristic of P.

The case n=2 and t=1 of these statements yields Pick's theorem. Formulas for the other coefficients are much harder to get; Todd classes of toric varieties, the Riemann-Roch theorem as well as Fourier analysis have been used for this purpose.

The Ehrhart polynomial of the interior of a closed polytope P can be computed as:

L(int P, t) = (-1)n L(P, −t).

References

  • E. Ehrhart: Sur un problème géométrie diophantienne linéaire II, Journal Reine Angewandte Mathematik 227 (1967), pp. 25-49. Definition and first properties.
  • Ricardo Diaz, Sinai Robins: The Ehrhart polynomial of a lattice n-simplex, Electronic Research Announcements of the American Mathematical Society 2 (1996), pages 1-6, online version (http://www.ams.org/era/1996-02-01/S1079-6762-96-00001-7/home.html). Introduces the Fourier analysis approach and gives references to other related articles.
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools