Derivative (examples)

Contents

Example 1

Consider f(x) = 5:

<math>f'(x)=\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\rightarrow 0} \frac{5-5}{h} = 0<math>

The derivative of a constant is zero.

Example 2

Consider the graph of <math>f(x)=2x-3<math>. If the reader has an understanding of algebra and the Cartesian coordinate system, the reader should be able to independently determine that this line has a slope of 2 at every point. Using the above quotient (along with an understanding of the limit, secant, and tangent) one can determine the slope at (4,5):

<math>f'(4) = \lim_{h\rightarrow 0}\frac{f(4+h)-f(4)}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{2(4+h)-3-(2\cdot 4-3)}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{8+2h-3-8+3}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{2h}{h} <math>
<math> = 2 <math>

The derivative and slope are equivalent.

Example 3

Via differentiation, one can find the slope of a curve. Consider <math>f(x)=x^2<math>:

<math> f'(x) = \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{(x+h)^2 - x^2}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{x^2 + 2xh + h^2 - x^2}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{2xh + h^2}{h} <math>
<math> = \lim_{h\rightarrow 0}(2x + h) <math>
<math> = 2x <math>

For any point x, the slope of the function <math>f(x)=x^2<math> is <math>f'(x)=2x<math>.

Example 4

Consider f(x) = √x:

<math> f'(x) = \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{\sqrt{x+h} - \sqrt{x}}{h} <math>
<math> = \lim_{h\rightarrow 0}\frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} <math>
<math> = \lim_{h\rightarrow 0}\frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})} <math>
<math> = \lim_{h\rightarrow 0}\frac{1}{\sqrt{x+h} + \sqrt{x}} <math>
<math> = \frac{1}{2 \sqrt{x}} <math>
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools