De Casteljau's algorithm
|
- The title of this article is incorrect because of technical limitations. The correct title is de Casteljau's algorithm.
In the mathematical subfield of numerical analysis the de Casteljau's algorithm, named after its inventor Paul de Casteljau, is a recursive method to evaluate polynomials in Bernstein form or Bézier curves.
Although the algorithm is slower for most architectures when compared with the direct approach it is numerically more stable.
Contents |
Definition
Given a polynomial B in Bernstein form of degree n
- <math>B(t) = \sum_{i=0}^{n}\beta_{i}b_{i,n}(t)<math>
the polynomial at point t0 can be evaluated with recurrence relation
- <math>\beta_i^{(0)} := \beta_i \mbox{ , } i=0,\ldots,n<math>
- <math>\beta_i^{(j)} := \beta_i^{(j-1)} (1-t_0) + \beta_{i+1}^{(j-1)} t_0 \mbox{ , } i = 0,\ldots,n-j \mbox{ , } j= 1,\ldots n<math>
with
- <math>B(t_0)=\beta_0^{(n)}<math>.
Notes
When doing the calculation by hand it is useful to write down the coefficients in a triangle scheme as
- <math>
\begin{matrix} \beta_0 & = \beta_0^{(0)} & & & \\
& & \beta_0^{(1)} & & \\
\beta_1 & = \beta_1^{(0)} & & & \\
& & & \ddots & \\
\vdots & & \vdots & & \beta_0^{(n)} \\
& & & & \\
\beta_{n-1} & = \beta_{n-1}^{(0)} & & & \\
& & \beta_{n-1}^{(1)} & & \\
\beta_n & = \beta_n^{(0)} & & & \\ \end{matrix} <math>
When choosing a point t0 to evaluate a Bernstein polynomial we can use the two diagonals of the triangle scheme to construct a division of the polynomial
- <math>B(t) = \sum_{i=0}^n \beta_i^{(0)} b_{i,n}(t) \qquad \mbox{ , } \in [0,1]<math>
into
- <math>B_1(t) = \sum_{i=0}^n \beta_0^{(i)} b_{i,n}\left(\frac{t}{t_0}\right) \qquad \mbox{ , } \in [0,t_0]<math>
and
- <math>B_2(t) = \sum_{i=0}^n \beta_{n-i}^{(i)} b_{i,n}\left(\frac{t-t_0}{1-t_0}\right) \qquad \mbox{ , } \in [t_0,1]<math>
Example
We want to evaluate the Bernstein polynomial of degree 2 with the Bernstein coefficients
- <math>\beta_0^{(0)} = \beta_0<math>
- <math>\beta_1^{(0)} = \beta_1<math>
- <math>\beta_2^{(0)} = \beta_2<math>
at the point t0.
We start the recursion with
- <math>\beta_0^{(1)} = \beta_0^{(0)} (1-t_0) + \beta_1^{(0)}t = \beta_0(1-t_0) + \beta_1 t_0<math>
- <math>\beta_1^{(1)} = \beta_1^{(0)} (1-t_0) + \beta_2^{(0)}t = \beta_1(1-t_0) + \beta_2 t_0<math>
and with the second iteration the recursion stops with
- <math>
\begin{matrix} \beta_0^{(2)} & = & \beta_0^{(1)} (1-t_0) + \beta_1^{(1)} t_0 \\ \ & = & \beta_0(1-t_0) (1-t_0) + \beta_1 t_0 (1-t_0) + \beta_1(1-t_0)t_0 + \beta_2 t_0 t_0 \\ \ & = & \beta_0 (1-t_0)^2 + \beta_1 2t_0(1-t_0) + \beta_2 t_0^2 \\ \end{matrix} <math>
which is the expected Bernstein polynomial of degree n.
Bézier curve
When evaluating a Bézier curve of degree n in 3 dimensional space with n+1 control points Pi
- <math>\mathbf{B}(t) = \sum_{i=0}^{n} \mathbf{P}_i b_{i,n}(t) \mbox{ , } t \in [0,1]<math>
with
- <math>\mathbf{P}_i :=
\begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} <math>.
we split the Bézier curve into three separate equations
- <math>B_1(t) = \sum_{i=0}^{n} x_i b_{i,n}(t) \mbox{ , } t \in [0,1]<math>
- <math>B_2(t) = \sum_{i=0}^{n} y_i b_{i,n}(t) \mbox{ , } t \in [0,1]<math>
- <math>B_3(t) = \sum_{i=0}^{n} z_i b_{i,n}(t) \mbox{ , } t \in [0,1]<math>
which we evaluate individually using de Casteljau's algorithm.
Pseudocode example
Here is a pseudo-code example that recursively draws a curve from point P1 to P4, tending towards points P2 and P3. The level parameter is the limiting factor of the recursion. The procedure calls itself recursively with an incremented level parameter. When level reaches the max_level global value, a line is drawn between P1 and P4 at that level. The function midpoint takes two points, and returns the middle point of a line segment between those two points.
global max_level = 5 procedure draw_curve(P1, P2, P3, P4, level) if (level > max_level) draw_line(P1, P4) else L1 = P1 L2 = midpoint(P1, P2) H = midpoint(P2, P3) R3 = midpoint(P3, P4) R4 = P4 L3 = midpoint(L2, H) R2 = midpoint(R3, H) L4 = midpoint(L3, R2) R1 = L4 draw_curve(L1, L2, L3, L4, level + 1) draw_curve(R1, R2, R3, R4, level + 1) end procedure draw_curve
Sample implementations
Haskell
Compute a point R by performing a linear interpolation of points P and Q with parameter t. Usage: linearInterp P Q t P = list representing a point Q = list representing a point t = parametric value for the linear interpolation, t<-[0..1] Returns: List representing the point (1-t)P + tQ > linearInterp :: [Float]->[Float]->Float->[Float] > linearInterp [] [] _ = [] > linearInterp (p:ps) (q:qs) t = (1-t)*p + t*q : linearInterp ps qs t Compute one level of intermediate results by performing a linear interpolation between each pair of control points. Usage: eval t b t = parametric value for the linear interpolation, t<-[0..1] b = list of control points Returns: For n control points, returns a list of n-1 interpolated points > eval :: Float->[[Float]]->[[Float]] > eval t (bi:bj:[]) = [linearInterp bi bj t] > eval t (bi:bj:bs) = (linearInterp bi bj t) : eval t (bj:bs) Compute a point on a Bezier curve using the de Casteljau algorithm. Usage: deCas t b t = parametric value for the linear interpolation, t<-[0..1] b = list of control points Returns: List representing a single point on the Bezier curve > deCas :: Float->[[Float]]->[Float] > deCas t (bi:[]) = bi > deCas t bs = deCas t (eval t bs) Compute the points along a Bezier curve using the de Casteljau algorithm. Points are returned in a list. Usage: bezierCurve n b n = number of points along the curve to compute b = list of Bezier control points Returns: A list of n+1 points on the Bezier curve Example: bezierCurve 50 [[0,0],[1,1],[0,1],[1,0]] > bezierCurve :: Int->[[Float]]->[[Float]] > bezierCurve n b = [deCas (fromIntegral x / fromIntegral n) b | x<-[0 .. n] ]
Python
(This code requires the Python Imaging Library.)
import Image import ImageDraw SIZE=128 image = Image.new("RGB", (SIZE, SIZE)) d = ImageDraw.Draw(image) def midpoint((x1, y1), (x2, y2)): return ((x1+x2)/2, (y1+y2)/2) MAX_LEVEL = 5 def draw_curve(P1, P2, P3, P4, level=1): if level == MAX_LEVEL: d.line((P1, P4)) else: L1 = P1 L2 = midpoint(P1, P2) H = midpoint(P2, P3) R3 = midpoint(P3, P4) R4 = P4 L3 = midpoint(L2, H) R2 = midpoint(R3, H) L4 = midpoint(L3, R2) R1 = L4 draw_curve(L1, L2, L3, L4, level+1) draw_curve(R1, R2, R3, R4, level+1) draw_curve((10,10),(100,100),(100,10),(100,100)) image.save(r"c:\DeCasteljau.png", "PNG") print "ok."
References
- Farin, Gerald & Hansford, Dianne (2000). The Essentials of CAGD. Natic, MA: A K Peters, Ltd. ISBN 1-56881-123-3
See also
- Horner scheme to evaluate polynomials in Monomial form
- Clenshaw algorithm to evaluate polynomials in Chebyshev form