Covariance

This article is not about the physics topic, covariant transformation, nor about the mathematics example for groupoids, covariance in special relativity, nor about parameter covariance in object-oriented programming.

In probability theory and statistics, the covariance between two real-valued random variables X and Y, with expected values <math>E(X)=\mu<math> and <math>E(Y)=\nu<math> is defined as:

<math>\operatorname{cov}(X, Y) = \operatorname{E}((X - \mu) (Y - \nu)), \,<math>

where E is the expected value. This is equivalent to the following formula which is commonly used in calculations:

<math>\operatorname{cov}(X, Y) = \operatorname{E}(X Y) - \mu \nu. \,<math>

If X and Y are independent, then their covariance is zero. This follows because under independence,

<math>E(X \cdot Y)=E(X) \cdot E(Y)=\mu\nu<math>.

The converse, however, is not true: it is possible that X and Y are not independent, yet their covariance is zero. Random variables whose covariance is zero are called uncorrelated.

If X and Y are real-valued random variables and c is a constant ("constant", in this context, means non-random), then the following facts are a consequence of the definition of covariance:

<math>\operatorname{cov}(X, X) = \operatorname{var}(X)\,<math>
<math>\operatorname{cov}(X, Y) = \operatorname{cov}(Y, X)\,<math>
<math>\operatorname{cov}(cX, Y) = c\, \operatorname{cov}(X, Y)\,<math>
<math>\operatorname{cov}\left(\sum_i{X_i}, \sum_j{Y_j}\right) = \sum_i{\sum_j{\operatorname{cov}\left(X_i, Y_j\right)}}\,<math>

For column-vector valued random variables X and Y with respective expected values μ and ν, and n and m scalar components respectively, the covariance is defined to be the n×m matrix

<math>\operatorname{cov}(X, Y) = \operatorname{E}((X-\mu)(Y-\nu)^\top).\,<math>

For vector-valued random variables, cov(X, Y) and cov(Y, X) are each other's transposes.

The covariance is sometimes called a measure of "linear dependence" between the two random variables. That phrase does not mean the same thing that it means in a more formal linear algebraic setting (see linear dependence), although that meaning is not unrelated. The correlation is a closely related concept used to measure the degree of linear dependence between two variables.de:Kovarianz es:Covarianza it:Covarianza no:Kovarians pl:Kowariancja pt:Covariāncia su:Kovarian

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools