Coordinates vector

Coordinates vector is a very important concept in Linear algebra and representation theory.

Contents

Definition

Let V be a linear space with dim V = n and let

<math> B = \{ b_1, b_2, b_3, \cdots, b_n \} <math>

be a linear basis for V. Therefore for every <math> v \in V <math> there is a linear combination (which is unique to v) of the basis vectors such as

<math> v = \alpha _1 b_1 + \alpha _2 b_2 + \cdots + \alpha _n b_n <math>

The α-s are determined uniquely by v and B (the theorem of basis guarantees this) and therefore we can say that the following is a Representation of v in the B basis. Now, we define the coordinates vector of v according to B (also called B representation of v) by:

<math> [ v ]_B = \begin{bmatrix} \alpha _1 \\ \ddots \\ \alpha _n \end{bmatrix} <math>

and the α-s are called the coordinates of v.

The mapping which matches each vector v from V to its coordinate vector [v]B is an isomorphism: a linear transformation which is a one-to-one correspondence and onto. This means that every finite-dimensional linear space can be treated as a "columns and squares" space Fn where n is the dimension of V and F is the field on which V is defined.

Coordinates vector is a very important concept in Linear algebra and representation theory, since it allows every calculation with abstract objects to be transformed into a calculation with blocks of numbers (matrices, column vectors) which we know how to do explicitly.

Example 1

Let P3 be the space of all the algebraic polynomials in degree less than 4 (i.e. the highest exponent of x can be 3). This space is linear and spanned by the following polynomials:

<math> B_P = \{ 1, x, x^2, x^3 \} <math>

matching

<math> 1 := \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad ; \quad x := \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad ; \quad x^2 := \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad ; \quad x^3 := \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad <math>

then the corresponding coordinate vector to the polynomial

<math> p \left( x \right) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 <math> is <math> \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} <math> .

According to that representation, the differentiation operator d/dx which we shall mark D will be represented by the following matrix:

<math> Dp(x) = P'(x) \quad ; \quad [D] =

\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} <math> Using that method it is easy to explore the properties of the operator: such as invertability, hermitian or anti-hermitian or none, spectrum and eigenvalues and more.

Example 2

The Pauli matrices which represent the spin operator when transforming the spin eigenstates into vector coordinates.

Basis transformation matrix

Let's mark with [M]B the matrix which has columns consisting of b1, b2, ..., bn . Then,

<math> v = [M]^{B} [v]_B <math>.

This formalism can be generalized for transforming v from B representation to a C representation (where C is another basis). Defining basis transformation matrix from B to C as the following matrix:

<math> [M]_{C}^{B} = \begin{bmatrix} \ [b_1]_C & \cdots & [b_n]_C \ \end{bmatrix} <math>

we receive the following theorem:

<math> [v]_C = [M]_{C}^{B} [v]_B <math>

Corollary:
This matrix is Invertible matrix and M-1 is the basis transformation matrix from C to B. In other words,

<math> [M]_{C}^{B} [M]_{B}^{C} = [M]_{C}^{C} = Id <math>
<math> [M]_{B}^{C} [M]_{C}^{B} = [M]_{B}^{B} = Id <math>

Remarks:

  1. The basis transformation matrix can be regarded as an automorphism over V.
  2. <math> [M]_{E}^{B} = [M]^{B} <math> where E is the standard basis.
  3. In order to easily remember the theorem
<math> [v]_C = [M]_{C}^{B} [v]_B <math>
notice that the M's sup-index and v's sub-index are "canceling" each other and the M's sub-index is what remains and become v's new sub-index. The "canceling" of index is not a real canceling but rather a manipulation of symbols which serves us for purposes of convenience.he:קואורדינטות (אלגברה)
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools