Concavity

In mathematical analysis, concavity is a property of certain geometric figures, and in calculus, a property of certain graphs of functions.

Concave functions

In calculus, a differentiable function f is convex on an interval if its derivative function f ′ is increasing on that interval: a convex function has an increasing slope. Similarly, a differentiable function f is concave on an interval if its derivative function f ′ is decreasing on that interval: a concave function has a decreasing slope.

A function that is convex is often synonymously called concave upwards, and a function that is concave is often synonymously called concave downward.

For a twice-differentiable function f, if the second derivative, f ''(x), is positive (or, if the acceleration is positive), then the graph is convex (or concave upward); if the second derivative is negative, then the graph is concave (or concave downward). Points where concavity changes are inflection points.

If a convex (i.e., concave upward) function has a "bottom", any point at the bottom is a minimal extremum. If a concave (i.e., concave downward) function has an "apex", any point at the apex is a maximal extremum.

Contrary to the impression one may get from a calculus course, differentiability is not essential to these concepts; see convex.

In mathematics, a function f(x) is said to be concave on an interval [a, b] if, for all x,y in [a, b],

<math>\forall t\in[0,1],\ \ f(tx + (1-t)y) \geq tf(x) + (1-t)f(y).<math>

Additionally, <math>f(x)<math> is strictly concave if

<math>\forall t\in[0,1],\ \ f(tx + (1-t)y) > tf(x) + (1-t)f(y).<math>

A continuous function on C is concave if and only if

<math>f\left( \frac{x+y}2 \right) \ge \frac{f(x)+f(y)}2 .<math>

for any x and y in C.

Equivalently, f(x) is concave on [a, b] iff the function −f(x) is convex on every subinterval of [a, b].

If f(x) is twice-differentiable, then f(x) is concave iff f ′′(x) is non-positive. If its second derivative is negative then it is strictly concave, but the opposite is not true, as shown by f(x) = -x4.

A function is called quasiconcave iff there is an <math>x_0<math> such that for all <math>xx_0<math> it is non-increasing. <math>x_0<math> can also be <math>+(-) \infty<math>, making the function non-decreasing (non-increasing) for all <math>x<math>. The opposite of quasiconcave is quasiconvex.

Concave polygons

In a concave polygon, some interior angle will be greater than 180°. The extension at that vertex of the line segment making up a side will pass through the interior of the polygon.

An example of a concave polygon
Enlarge
An example of a concave polygon

A concave polygon is often called re-entrant polygon (but in some cases the latter term has a different meaning).

See also

convexda:Konkav de:Konkav he:פונקציה קעורה nl:Concaaf sv:Konkav

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools