Centralizer and normalizer

In group theory, the centralizer and normalizer of a subset S of a group G are subgroups of G which have a restricted action on the elements of S and S as a whole, respectively. These subgroups provide insight into the structure of G.

Definitions

The centralizer of an element a of a group G (written as CG(a)) is the set of elements of G which commute with a; in other words, CG(a) = {x in G : xa = ax}. If H is a subgroup of G, then CH(a) = CG(a) ∩ H. If there is no danger of ambiguity, we can write CG(a) as C(a).

More generally, let S be any subset of G (not necessarily a subgroup). Then the centralizer of S in G is defined as C(S) = (x in G : for all s in S, xs = sx}. If S = {a}, then C(S) = C(a).

C(S) is a subgroup of G; since if x, y are in C(S), then xy −1s = xsy −1 = sxy −1.

The center of a group G is CG(G), usually written as Z(G). The center of a group is both normal and abelian and has many other important properties as well. We can think of the centralizer of a as the largest (in the sense of inclusion) subgroup H of G having having a in its center, Z(H).

A related concept is that of the normalizer of S in G, written as NG(S) or just N(S). The normalizer is defined as N(S) = {x in G : xS = Sx}. Again, N(S) can easily be seen to be a subgroup of G. The normalizer gets it name from the fact that if we let <S> be the subgroup generated by S, then N(S) is the largest subgroup of G having <S> as a normal subgroup (compare this with the conjugate closure of S).

Properties

If G is an abelian group, then the centralizer or normalizer of any subset of G is all of G; in particular, a group is abelian if and only if Z(G) = G.

If a and b are any elements of G, then a is in C(b) if and only if b is in C(a), which happens if and only if a and b commute. If S = {a} then N(S) = C(S) = C(a).

C(S) is always a normal subgroup of N(S): If c is in C(S) and n is in N(S), we have to show that n −1cn is in C(S). To that end, pick s in S and let t = nsn −1. Then t is in S, so therefore ct = tc. Then note that ns = tn; and n −1t = sn −1. So

(n −1cn)s = (n −1c)tn = (n −1(tc)n = (sn −1)cn = s(n −1cn)

which is what we needed.

If H is a subgroup of G, then the N/C theorem states that the factor group N(H)/C(H) is isomorphic to a subgroup of Aut(H), the automorphism group of H.

Since NG(G) = G, the N/C Theorem also implies that G/Z(G) is isomorphic to Inn(G), the subgroup of Aut(G) consisting of all inner automorphisms of G.

If we define a group homomorphism T : G → Inn(G) by T(x)(g) = Tx(g) = xgx −1, then we can describe N(S) and C(S) in terms of the group action of Inn(G) on G: the stabilizer of S in Inn(G) is T(N(S)), and the subgroup of Inn(G) fixing S is T(C(S)).fr:Centralisateur pl:Centralizator

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools