Campbell-Hausdorff formula

In mathematics, the Campbell-Hausdorff formula (also called the Campbell-Baker-Hausdorff formula) is the solution to

z = ln(exey)

for non-commuting x and y. It is named for John Edward Campbell (1862-1924), H. F. Baker and Felix Hausdorff.

Specifically, let G be a simply-connected Lie group with Lie algebra <math>\mathfrak g\ <math>. Let

exp: <math>\mathfrak g\rightarrow G <math>

be the exponential map, defining

<math>Z = X * Y = \mbox{ln(exp}X\cdot\mbox{exp}Y\mbox{)}, \ X, Y\in\mathfrak g. <math>

The general formula is given by:

<math>X*Y =

\sum_{n>0}\frac {(-1)^{n+1}}{n}

\sum_{ \begin{matrix} & {r_i + s_i > 0}

                     \\ & {1\le i \le n} \end{matrix}}

\frac{(\sum_{i=1}^n (r_i+s_i))^{-1}}{r_1!s_1!\cdots r_n!s_n!}

\times(\mbox{ad} X)^{r_1}(\mbox{ad} Y)^{s_1}\cdots (\mbox{ad} X)^{r_n}(\mbox{ad} Y)^{s_n - 1}Y.

<math>

Here

ad(A)B = [A,B]

is the adjoint endomorphism.

In terms in the sum where <math>s_n = 0<math>, the last three factors should be interpreted as <math>(\mbox{ad} X)^{r_n - 1} X<math>.

The first few terms are well-known:

<math>X*Y = X + Y + \frac {1}{2}[X,Y] - \frac {1}{12}[X,[Y,X]] - \frac {1}{12}[Y,[X,Y]] - \frac
{1}{48}[Y,[X[X,Y]]] - \frac{1}{48}

[X,[Y,[X,Y]]] + \mbox{(commutators of five and greater terms)}.<math>

There is no expression in closed form.

For a matrix Lie algebra <math> G\sub GL(n,\mathbb{R}), <math> the Lie algebra is the tangent space of the identity I, and the commutator is simply [X,Y] = XY - YX; the exponential map is the standard exponential map of matrices,

<math>\mbox{exp}\ X = e^X = \sum_{n=0}^{\infty}{\frac
{X^n}{n!}}. <math>

When we solve for Z in

eZ = eX eY,

we obtain a simpler formula:

<math> Z =

\sum_{n>0} \frac{(-1)^{n+1}}{n} \sum_{\begin{matrix} &{r_i+s_i>0}

                    \\ & {1\le i\le n}\end{matrix}}

\frac{X^{r_1}Y^{s_1}\cdots X^{r_n}Y^{s_n}}{r_1!s_1!\cdots r_n!s_n!}<math>.

We note that the first, second, third and fourth order terms are:

  • <math>z_1 = X + Y<math>
  • <math> z_2 = \frac
{1}{2} (XY - YX)<math>
  • <math>z_3 = \frac
{1}{12} (X^2Y + XY^2 - 2XYX + Y^2X + YX^2 - 2YXY)<math>
  • <math>z_4 = \frac
{1}{24} (X^2Y^2 - 2XYXY - Y^2X^2 + 2YXYX).<math>

References

  • L. Corwin & F.P Greenleaf (1990) Representation of nilpotent Lie groups and their applications, Part 1: Basic theory and examples,

External link

  • MathWorld page (http://mathworld.wolfram.com/Baker-Campbell-HausdorffSeries.html)
Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools