Banach fixed point theorem

The Banach fixed point theorem is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self maps of metric spaces, and provides a constructive method to find those fixed points. The theorem is named after Stefan Banach (1892-1945), and was first stated by Banach in 1922.

Contents

The theorem

Let (X, d) be a non-empty complete metric space. Let T : X -> X be a contraction mapping on X, i.e: there is a real number q < 1 such that

<math>d(Tx,Ty) \le q\cdot d(x,y)<math>

for all x, y in X. Then the map T admits one and only one fixed point x* in X (this means Tx* = x*). Furthermore, this fixed point can be found as follows: start with an arbitrary element x0 in X and define an iterative sequence by xn = Txn-1 for n = 1, 2, 3, ... This sequence converges, and its limit is x*. The following inequality describes the speed of convergence:

<math>d(x^*, x_n) \leq \frac{q^n}{1-q} d(x_1,x_0)<math>.

Equivalently,

<math>d(x^*, x_{n+1}) \leq \frac{q}{1-q} d(x_{n+1},x_n)<math>

and

<math>d(x^*, x_{n+1}) \leq q d(x_n,x^*)<math>.

The smallest such value of q is sometimes called the Lipschitz constant.

Note that the requirement d(Tx, Ty) < d(x, y) for all unequal x and y is in general not enough to ensure the existence of a fixed point, as is shown by the map T : [1,∞) → [1,∞) with T(x) = x + 1/x, which lacks a fixed point. However, if the space X is compact, then this weaker assumption does imply all the statements of the theorem.

When using the theorem in practice, the most difficult part is typically to define X properly so that T actually maps elements from X to X, i.e. that Tx is always an element of X.

Applications

A standard application is the proof of the Picard-Lindelöf theorem about the existence and uniqueness of solutions to certain ordinary differential equations. The sought solution of the differential equation is expressed as a fixed point of a suitable integral operator which transforms continuous functions into continuous functions. The Banach fixed point theorem is then used to show that this integral operator has a unique fixed point.

Converses

Several converses of the Banach contraction principle exist. The following is due to Czeslaw Bessaga, from 1959:

Let <math>f:X\rightarrow X<math> be a map of an abstract set such that each iterate f n has a unique fixed point. Let q be a real number, 0 < q < 1. Then there exists a complete metric on X such that f is contractive, and q is the contraction constant.

Generalizations

See the article on fixed point theorems in infinite-dimensional spaces for generalizations.

References

  • Vasile I. Istratescu, Fixed Point Theory, An Introduction, D.Reidel, the Netherlands (1981). ISBN 90-277-1224-7 See chapter 7.
  • Andrzej Granas and James Dugundji, Fixed Point Theory (2003) Springer-Verlag, New York, ISBN 0-387-00173-5.
  • William A. Kirk and Brailey Sims, Handbook of Metric Fixed Point Theory (2001), Kluwer Academic, London ISBN 0-7923-7073-2.

An earlier version of this article was posted on Planet Math (http://planetmath.org/encyclopedia/BanachFixedPointTheorem.html). This article is open content.de:Fixpunktsatz von Banach pl:Twierdzenie Banacha o kontrakcji

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools