Alternating series

In mathematics, an alternating series is an infinite series of the form

<math>\sum_{n=0}^\infty (-1)^n\,a_n,<math>

with an ≥ 0. A sufficient condition for the series to converge is that it converges absolutely. But this is often too strong a condition to ask: it is not necessary. For example, the harmonic series

<math>\sum_{n=0}^\infty \frac{1}{n+1},<math>

diverges, while the alternating version

<math>\sum_{n=0}^\infty \frac{(-1)^n}{n+1}<math>

converges to the natural logarithm of 2.

A broader test for convergence of an alternating series is the Cauchy criterion: if the sequence <math>a_n<math> is monotone decreasing and tends to zero, then the series

<math>\sum_{n=0}^\infty (-1)^n\,a_n<math>

converges.

A conditionally convergent series is an infinite series that converges, but does not converge absolutely. The following non-intuitive result is true: if the real series

<math>\sum_{n=0}^\infty (-1)^n\,a_n<math>

converges conditionally, then for every real number <math>\beta<math> there is a reordering <math>\sigma<math> of the series such that

<math>\sum_{n=0}^\infty (-1)^{\sigma(n)}\,a_{\sigma(n)}=\beta.<math>

As an example of this, consider the series above for the natural logarithm of 2:

<math>\ln 2=\sum_{n=0}^\infty \frac{(-1)^n}{n+1}=1-\frac12+\frac13-\frac14+\frac15-\cdots.

<math>

One possible reordering for this series is as follows (the only purpose of the brackets in the first line is to help clarity):

<math>1-\frac12-\frac14+\left(\frac13-\frac16\right)-\frac18+\left(\frac15-\frac1{10}\right)-\frac1{12}

+\left(\frac17-\frac1{14}\right)-\frac1{16}+\cdots<math>

<math>=\frac12-\frac14+\frac16-\frac18+\frac1{10}-\cdots<math>
<math>=\frac12\left(1-\frac12+\frac13-\frac14+\frac15-\cdots\right)<math>
<math>=\frac12\,\ln2.<math>

A proof of this assertion runs along the lines: the greedy algorithm for σ is correct.

Navigation

  • Art and Cultures
    • Art (https://academickids.com/encyclopedia/index.php/Art)
    • Architecture (https://academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (https://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (https://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools